Remarks on connections between the Leopoldt conjecture, p-class groups and unit groups of algebraic number fields

By Hiroshi YAMASHITA

(Received June 18, 1988) (Revised Feb. 17, 1989)

Introduction.

Let p be a prime number. Leopoldt [8] showed that the p-adic rank r_p of the unit group of a totally real abelian number field K equals the number of non-trivial characters of K such that the p-adic L-functions associated to them have not value 0 at 1. Moreover, he obtained the p-adic class number formula in case where the p-adic rank equals the total number of non-trivial characters which is equal to the rank of the unit group. The Leopoldt conjecture comes from this. This equality of the p-adic rank and the rank of the unit group for an abelian field was verified by Ax [1] for several special cases, and was proved completely by Brumer [2] in the general case.

We define the p-adic rank of the unit group of an algebraic number field to which we referred above. Let \mathcal{O} be an integral domain and \mathcal{K} be its field of quotients. For an \mathcal{O} -module M, we define the essential \mathcal{O} -rank of M to be the value of $\dim_{\mathcal{K}} M \otimes_{\mathcal{O}} \mathcal{K}$, and denote it by ess. \mathcal{O} -rank M.

Let k denote a finite algebraic number field throughout this paper. Let E_1 be the group of units which are congruent to 1 modulo every prime $\mathfrak p$ lying over p, and let $U_{\mathfrak p}(1)$ be the group of the local units u such that $u\equiv 1 \mod \mathfrak p$. Then E_1 is embedded into $\prod_{\mathfrak p\mid p}U_{\mathfrak p}(1)$ by $\varepsilon\to(\varepsilon,\,\varepsilon,\,\cdots\,,\,\varepsilon)$. Denote by $\overline E_1$ the closure of E_1 in $\prod U_{\mathfrak p}(1)$. Since $U_{\mathfrak p}(1)$ are multiplicative $\mathbf Z_p$ -modules, where $\mathbf Z_p$ is the ring of p-adic integers, $\overline E_1$ is also a $\mathbf Z_p$ -module. We refer to the ess. $\mathbf Z_p$ -rank of $\overline E_1$ as the p-adic rank of the unit group of k, and denote it by r_p in this paper.

The Leopoldt conjecture predicts that the p-adic rank equals the essential Z-rank of the unit group in any algebraic number field. We know by Brumer [2] that this equality holds for an abelian extension of an imaginary quadratic number field, and also know by Miyake [10] for certain non-abelian extensions of imaginary quadratic number fields.

Let r be the essential Z-rank of the unit group of k, and we set $\delta_p = r - r_p$.