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\S 1. Introduction and statement of results.

There are strong relations between the topology and the curvature of a
Riemannian manifold. For example, let $M$ be a compact Riemannian manifold
of negative curvature. Then every abelian subgroup of $\pi_{1}(M)$ must be cyclic,
which is not necessarily true for a manifold of non-positive curvature.

A natural question is under what conditions a metric of non-positive curvature
can be deformed to a metric of negative curvature. For this question, we have
the following results.

THEOREM 1. Let $(M, g)$ be a comPlete Riemannian manifold with $K_{g}\leqq 0_{r}$

where $K_{g}$ denotes the sectional curvature of $(M, g)$ , and $p$ a point in M. Then
there is a Positive number $R$ which is determined by the metric $g$ and its $de-$

rivatives around $p$, such that the following holds; $suPloseK_{g}<0$ on $M\backslash B_{R}(P)$ ,
then there is a metric $\overline{g}$ such that $K_{\overline{9}}<0$ and $g=\overline{g}$ on $M\backslash B_{R}(p)$ , where we put
$B_{R}(p)=\{q\in M;d(p, q)<R\}$ .

In general, the number $R$ in Theorem 1 is much smaller than $i(p)$ , the in-
jectivity radius at $p$ , but for two dimensional manifolds, we have a better result.

THEOREM 2. Let $(M, g)$ be a complete Riemannian manifold of two dimension
with $K_{g}\leqq 0$ . Suppose there is a point $p$ in $M$ such that $K_{g}<0$ on $M\backslash B_{t(p)}(p)$ .
Then there is a complete metric $\overline{g}$ such that $K_{\overline{9}}<0$ and $g=\overline{g}$ on $M\backslash B_{i(p)}(p)$ .

AS a corollary to Theorem 2, we have the following result for $R^{2}$ .
COROLLARY OF THEOREM 2. Let $(R^{2}, g)$ be a comPlete metric on $R^{2}$ with

$K_{g}\leqq 0$ . Suppose there is a compact set $A\subset R^{2}$ with $K_{g}<0$ on $R^{2}\backslash A$ . Then there
is a complete metric $\overline{g}$ on $R^{2}$ with $K_{g}<0$ and $g=\overline{g}$ on $R^{2}\backslash B$ for some comPact
set $B\subset R^{2}$ .

Generally, it is not possible to change a metric of non-positive curvature to
a metric of negative curvature, because there is a topological obstruction be-
tween them as is stated before. But if the set of points at which $K_{g}$ takes the
zero is contained in a topologically trivial ball, then it is likely that we can


