J. Math. Soc. Japan Vol. 42, No. 2, 1990

Joint spectra of strongly hyponormal operators on Banach spaces

Dedicated to Professor Emeritus Eiitiro Homma with respect

By Muneo CHO

(Received Dec. 12, 1988)

1. Introduction.

The joint spectrum for a commuting *n*-tuple in functional analysis has its origin in functional calculus which appeared in J.L. Taylor's paper [23] in 1970. In the case of operators on Hilbert spaces, in [25] F.-H. Vasilescu characterized the joint spectrum for a commuting pair and in [11] R. Curto did it for a commuting *n*-tuple.

For those on a Banach space, in [18] and [19] A. McIntosh, A. Pryde and W. Ricker characterized the joint spectrum for a strongly commuting *n*-tuple of operators. In [5] M. Chō proved that the joint spectrum for such an *n*-tuple is the joint approximate point spectrum of it.

The aim of this paper is to give a characterization of the joint spectrum for a doubly commuting n-tuple of strongly hyponormal operators on a uniformly convex and uniformly smooth space.

Let E^n be the complex exterior algebra on *n*-generators e_1, \dots, e_n with product \wedge . Then E^n is graded: $E^n = \bigoplus_{k=-\infty}^{\infty} E_k^n$, where $E_k^n \wedge E_1^n \subset E_{k+1}^n$ and $\{e_{j_1} \wedge \dots \wedge e_{j_k}: 1 \leq j_1 < \dots < j_k \leq n\}$ is a basis for $E_k^n (k \geq 1)$, while $E_0^n \cong C$ and $E_k^n =$ (0) for k < 0 and k > n. Let X be a complex Banach space and $T = (T_1, \dots, T_n)$ be a commuting *n*-tuple of bounded linear operators on X. Let $E_k^n(X) = E_k^n \otimes X$ and define $D_k^{(n)}: E_k^n(X) \to E_{k-1}^n(X)$ by $D_k^{(n)}(x \otimes e_{j_1} \wedge \dots \wedge e_{j_k}) = \sum_{i=1}^k (-1)^{i+1}T_{j_i}x \otimes$ $e_{j_1} \wedge \dots \wedge \check{e}_{j_i} \wedge \dots \wedge e_{j_k}$ when k > 0 (here $\check{}$ means deletion), and $D_k^{(n)} = 0$ when $k \leq 0$ and k > n. A straightforward computation shows that $D_k^{(n)} \circ D_{k+1}^{(n)} = 0$ for all k, so that $\{E_k^n(X), D_k^{(n)}\}_{k \in \mathbb{Z}}$ is a chain complex, called the Koszul complex for $T = (T_1, \dots, T_n)$ and denoted by E(X, T). Of course, the mapping $D_k^{(n)}$ depends on $T = (T_1, \dots, T_n)$. We denote it by $D_k^{(n)}(T)$, if necessary.

We define $T = (T_1, \dots, T_n)$ to be invertible in case its associated Koszul complex is exact (that is, $\operatorname{Ker}(D_k^{(n)}) = R(D_{k+1}^{(n)})$ for all k). The Taylor spectrum $\sigma(T)$ for $T = (T_1, \dots, T_n)$ is the set of $z \in C^n$ such that $T - z = (T_1 - z_1, \dots, T_n - z_n)$ is not invertible.