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1. Introduction.

The joint spectrum for a commuting n-tuple in functional analysis has its
origin in functional calculus which appeared in J. L. Taylor’s paper [23] in 1970.
In the case of operators on Hilbert spaces, in [25] F.-H. Vasilescu characterized
the joint spectrum for a commuting pair and in [11] R. Curto did it for a com-
muting n-tuple.

For those on a Banach space, in [18] and [19] A. McIntosh, A. Pryde and
W. Ricker characterized the joint spectrum for a strongly commuting n-tuple
of operators. In [5] M. Cho proved that the joint spectrum for such an n-tuple
is the joint approximate point spectrum of it.

The aim of this paper is to give a characterization of the joint spectrum
for a doubly commuting n-tuple of strongly hyponormal operators on a uniformly
convex and uniformly smooth space.

Let $E^{n}$ be the complex exterior algebra on $n$ -generators $e_{1},$
$\cdots$ , $e_{n}$ with

product $\wedge$ . Then $E^{n}$ is graded: $E^{n}=\oplus_{k=-\infty}^{\infty}E_{k}^{n}$ , where $E_{k}^{n}\wedge E_{1}^{n}\subset E_{k+1}^{n}$ and
$\{e_{j_{1}}\Lambda\cdots\Lambda e_{j_{k}} : 1\leqq j_{1}<\cdots<j_{k}\leqq n\}$ is a basis for $E_{k}^{n}(k\geqq 1)$ , while $E_{0}^{n}\cong C$ and $E_{k}^{n}=$

(0) for $k<0$ and $k>n$ . Let $X$ be a complex Banach space and $T=(T_{1}, \cdot , T_{n})$

be a commuting n-tuple of bounded linear operators on $X$. Let $E_{k}^{n}(X)=E_{k}^{n}\otimes X$

and define $D_{k}^{(n)}$ : $E_{k}^{n}(X)arrow E_{k-1}^{n}(X)$ by $D_{k}^{(n)}(x\otimes e_{f_{1}}\wedge\cdots\wedge e_{J_{k}})=\Sigma_{t\Leftarrow 1}^{k}(-1)^{i+1}T_{j_{i}}x\otimes$

$e_{j_{1}}\wedge\cdots\wedge\check{e}_{j_{i}}\wedge\cdots\Lambda e_{j_{k}}$ when $k>0$ (here “ means deletion), and $D_{k}^{(n)}=0$ when $k\leqq 0$

and $k>n$ . A straightforward computation shows that $D_{k}^{(n)}\circ D_{k+1}^{(n)}=0$ for all $k$ ,

so that $\{E_{k}^{n}(X), D_{k}^{(n)}\}_{k\in Z}$ is a chain complex, called the Koszul complex for
$T=(T_{1}, \cdots , T_{n})$ and denoted by $E(X, T)$ . Of course, the mapping $D_{k}^{(n)}$ depends
on $T=(T_{1}, \cdots , T_{n})$ . We denote it by $D_{k}^{(n)}(T)$ , if necessary.

We define $T=(T_{1}, \cdots , T_{n})$ to be invertible in case its associated Koszul
complex is exact (that is, $Ker(D_{k}^{(n)})=R(D_{k+1}^{(n)})$ for all $k$ ). The Taylor spectrum
$\sigma(T)$ for $T=(T_{1}, \cdots , T_{n})$ is the set of $z\in C^{n}$ such that $T-z=(T_{1}-z_{1},$ $\cdots$ , $T_{n}-$

$z_{n})$ is not invertible.


