On a p-adic interpolating power series of the generalized Euler numbers

By Kazuhito Kozuka

(Received July 11, 1988)
(Revised Nov. 30, 1988)

§ 1. Introduction.

Let $u \neq 1$ be an algebraic number. The n-th Euler number $H^{n}(u)$ belonging to u is defined by

$$
\frac{1-u}{e^{t}-u}=\sum_{n=0}^{\infty} \frac{H^{n}(u)}{n!} t^{n}
$$

Let p be a prime number and χ a primitive Dirichlet character. ShirataniYamamoto ([6]) constructed a p-adic interpolating function $G_{p}(s, u)$ of the Euler numbers $H^{n}(u)$, and as its applications to the p-adic L-functions $L_{p}(s, \chi)$, they derived an explicit formula for $L_{p}^{\prime}(0, \chi)$ including Ferrero-Greenberg's formula ([2]), and gave an explanation of Diamond's formula ([1]).

Let f_{χ} be the conductor of χ. As analogous to the generalized Bernoulli numbers, Tsumura ([10]) defined the n-th generalized Euler number $H_{x}^{n}(u)$ for χ belonging to u by
and he constructed a p-adic interpolating function $l_{p}(s, u, \chi)$, which is an extension of $G_{p}(s, \chi)$. Further, by considering the expansion of $l_{p}(s, u, \chi)$ at $s=1$, he obtained some congruences for the generalized Euler numbers.

Sinnott ([7]) showed how to calculate the μ-invariants of the Γ-transforms of rational functions, and gave a new proof of the well-known theorem of Ferrero-Washington that Iwasawa's μ-invariants are zero for the basic \boldsymbol{Z}_{p} extensions of all abelian number fields. By similar technique, an analytic property of the interpolating power series of $L_{p}(s, \chi)$ was investigated in [8], and a new proof of the Friedman's result in [3] was given in [9].

In the present paper, by similar methods used in [7], [8] and [9] we shall investigate an interpolating power series of the generalized Euler numbers. In $\S 2$, we shall reconstruct the function $l_{p}(s, u, \chi)$ by constructing an interpolating power series $F_{\chi, u}(T)$, and calculate the μ-invariant of $F_{\chi, u}(T)$. (The power

