On a *p*-adic interpolating power series of the generalized Euler numbers

By Kazuhito KOZUKA

(Received July 11, 1988) (Revised Nov. 30, 1988)

§1. Introduction.

Let $u \neq 1$ be an algebraic number. The *n*-th Euler number $H^n(u)$ belonging to u is defined by

$$\frac{1-u}{e^t-u} = \sum_{n=0}^{\infty} \frac{H^n(u)}{n!} t^n.$$

Let p be a prime number and χ a primitive Dirichlet character. Shiratani-Yamamoto ([6]) constructed a *p*-adic interpolating function $G_p(s, u)$ of the Euler numbers $H^n(u)$, and as its applications to the *p*-adic *L*-functions $L_p(s, \chi)$, they derived an explicit formula for $L'_p(0, \chi)$ including Ferrero-Greenberg's formula ([2]), and gave an explanation of Diamond's formula ([1]).

Let f_{χ} be the conductor of χ . As analogous to the generalized Bernoulli numbers, Tsumura ([10]) defined the *n*-th generalized Euler number $H_{\chi}^{n}(u)$ for χ belonging to *u* by

(1.1)
$$\sum_{a=0}^{f_{\chi}-1} \frac{(1-u^{f_{\chi}})\chi(a)e^{at}u^{f_{\chi}-a-1}}{e^{f_{\chi}t}-u^{f_{\chi}}} = \sum_{n=0}^{\infty} \frac{H_{\chi}^{n}(u)}{n!}t^{n},$$

and he constructed a *p*-adic interpolating function $l_p(s, u, \chi)$, which is an extension of $G_p(s, \chi)$. Further, by considering the expansion of $l_p(s, u, \chi)$ at s=1, he obtained some congruences for the generalized Euler numbers.

Sinnott ([7]) showed how to calculate the μ -invariants of the Γ -transforms of rational functions, and gave a new proof of the well-known theorem of Ferrero-Washington that Iwasawa's μ -invariants are zero for the basic \mathbb{Z}_p -extensions of all abelian number fields. By similar technique, an analytic property of the interpolating power series of $L_p(s, \chi)$ was investigated in [8], and a new proof of the Friedman's result in [3] was given in [9].

In the present paper, by similar methods used in [7], [8] and [9] we shall investigate an interpolating power series of the generalized Euler numbers. In §2, we shall reconstruct the function $l_p(s, u, \chi)$ by constructing an interpolating power series $F_{\chi,u}(T)$, and calculate the μ -invariant of $F_{\chi,u}(T)$. (The power