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1. Introduction.

The main purpose of this paper is to study what kind of space contains a
(closed) copy of $Q$, where $Q$ is the space of rationals with the usual topology.
We show that every non-scattered La\v{s}nev space contains a copy of $Q$ and every
non-scattered sequential space with character less than $b$ contains a copy of $Q$,
where $b$ is the minimum cardinal of an unbounded subfamily of $\omega\omega$ (see [2]).

In addition, let $X_{n}(n<\omega)$ be arbitrary regular topological spaces. If $Q$ is em-
bedded in $\Pi_{n<\omega}X_{n}$ as a closed subset, then there exists an $n<\omega$ such that $X_{n}$

contains a copy of $Q$, where $\omega$ is the first infinite ordinal number. Moreover
if we assume Martin’s axiom (MA), the statement holds for any infinite cardinal
number rc less than $c(=2^{\omega})$ instead of $\omega$ . The following theorems are of similar
form to the last theorem.

(1) If $\beta\omega$ is embedded in $\prod_{\alpha<\kappa}X_{\alpha}$ (rc $<cf(c)$), then there exists an $\alpha<\kappa$ such
that $X_{a}$ contains a copy of $\beta\omega$, where $\beta\omega$ is the $Stone-\check{C}ech$ compactification of
$\omega$ with the discrete toPology.

This theorem was proved by Malyhin [6] for the case $\kappa=\omega$ and by van
Douwen-Przymusinski [3] for the other case.

(2) (Nogura-Tanaka [8]) If $S(S_{2})$ is embedded in $\Pi_{\alpha<\iota}X_{a}(\kappa<b)$ , then there
exist $\alpha_{1},$ $\alpha_{2},$

$\cdots$ , $\alpha_{n}$ such that $\Pi_{i=1}^{n}X_{a_{i}}$ contains a coPy of $S$ ( $S$ or $S_{2},$ resPectively),

where $S$ is a sequential fan and $S_{2}$ is Arens’ sPace (see [1] or [8]).

We note that the closedness of embedding in our last theorem can not be
dropped, because the product of infinitely many non-degenerate topological spaces
contains a copy of $Q$ .

By a mapping we mean a continuous, surjective function and by a space a
regular $T_{1}$ topological space.


