J. Math. Soc. Japan Vol. 42, No. 1, 1990

Spaces which contain a copy of the rationals

Dedicated to Professor Yukihiro Kodama on his 60-th birthday

By Katsuya EDA, Shizuo KAMO and Tsugunori NOGURA

(Received Aug. 8, 1988) (Revised Nov. 28, 1988)

1. Introduction.

The main purpose of this paper is to study what kind of space contains a (closed) copy of Q, where Q is the space of rationals with the usual topology. We show that every non-scattered Lašnev space contains a copy of Q and every non-scattered sequential space with character less than b contains a copy of Q, where b is the minimum cardinal of an unbounded subfamily of ${}^{\omega}\omega$ (see [2]). In addition, let X_n ($n < \omega$) be arbitrary regular topological spaces. If Q is embedded in $\prod_{n < \omega} X_n$ as a closed subset, then there exists an $n < \omega$ such that X_n contains a copy of Q, where ω is the first infinite ordinal number. Moreover if we assume Martin's axiom (MA), the statement holds for any infinite cardinal number κ less than c (=2 $^{\omega}$) instead of ω . The following theorems are of similar form to the last theorem.

(1) If $\beta \omega$ is embedded in $\prod_{\alpha < \kappa} X_{\alpha}$ ($\kappa < cf(c)$), then there exists an $\alpha < \kappa$ such that X_{α} contains a copy of $\beta \omega$, where $\beta \omega$ is the Stone-Čech compactification of ω with the discrete topology.

This theorem was proved by Malyhin [6] for the case $\kappa = \omega$ and by van Douwen-Przymusinski [3] for the other case.

(2) (Nogura-Tanaka [8]) If $S(S_2)$ is embedded in $\prod_{\alpha < \kappa} X_{\alpha}$ ($\kappa < b$), then there exist $\alpha_1, \alpha_2, \cdots, \alpha_n$ such that $\prod_{i=1}^n X_{\alpha_i}$ contains a copy of $S(S \text{ or } S_2, \text{ respectively})$, where S is a sequential fan and S_2 is Arens' space (see [1] or [8]).

We note that the closedness of embedding in our last theorem can not be dropped, because the product of infinitely many non-degenerate topological spaces contains a copy of Q.

By a mapping we mean a continuous, surjective function and by a space a regular T_1 topological space.