On the unit groups of Burnside rings

Dedicated to the memory of Professor Akira Hattori
By Tomoyuki Yoshida

(Received Nov. 13, 1986)
(Revised Sept. 26, 1988)

1. Introduction.

Let G be a finite group. The set $A^{+}(G)$ of the G-isomorphism classes of finite right G-sets makes a commutative semi-ring with respect to disjoint union + and Cartesian product \times. Its Grothendieck ring is called the Burnside ring of G and is denoted by $A(G)$. A finite (right) G-set is the disjoint union of its orbits and each orbit is G-isomorphic to a homogeneous G-set $H \backslash G:=$ $\{H g \mid g \in G\}$. Two G-sets $H \backslash G$ and $K \backslash G$ are isomorphic if and only if $H={ }_{G} K$, that is, H is G-conjugate to K. Thus this ring is additively a free abelian group on $\{[H \backslash G] \mid(H) \in C l(G)\}$, where $C l(G)$ is the conjugacy classes (H) of subgroups H of G.

A super class function is a map of the set of subgroups of G to Z which is constant on each conjugacy class of subgroups. Let $\tilde{A}(G):=\boldsymbol{Z}^{c l(G)}$ be the ring of integral valued super class functions. For any subgroup S of G, the map $[X] \mapsto\left|X^{S}\right|$, the number of fixed-points, extends to a ring homomorphism φ_{S} : $A(G) \rightarrow \boldsymbol{Z}$, and so we have a ring homomorphism

$$
\begin{equation*}
\varphi:=\prod_{(S)} \varphi_{S}: \quad A(G) \longrightarrow \tilde{A}(G):=\boldsymbol{Z}^{C l(G)} ; \quad[X] \longmapsto\left(\left|X^{s}\right|\right) . \tag{1}
\end{equation*}
$$

It is well-known that this map is injective. Thus we can identify any element x of $A(G)$ with the super class function $\varphi(x)$, and so we simply write

$$
x(S):=\varphi(x)(S)=\varphi_{S}(x)
$$

for a subgroup S of G. Hence we can view the unit group $A(G)^{*}$ as a subgroup of $\{ \pm 1\}^{C l(G)}$.

Now, tom Dieck proved by a geometric method that for any $R G$-module V the function

$$
u(V): \quad S \longmapsto \operatorname{sgn} \operatorname{dim} V^{S}
$$

belongs to the Burnside ring $A(G)$, where $\operatorname{sgn} m:=(-1)^{m}$ ([Di79, Proposition 5.5.9]). The first purpose of this paper is to prove this fact by a purely alge-

