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1. Introduction.

Let $G$ be a finite group. The set $A^{+}(G)$ of the $G$ -isomorphism classes of
finite right $G$ -sets makes a commutative semi-ring with respect to disjoint union
$+and$ Cartesian product $\cross$ . Its Grothendieck ring is called the Burnside ring
of $G$ and is denoted by $A(G)$ . A finite (right) $G$ -set is the disjoint union of
its orbits and each orbit is $G$ -isomorphic to a homogeneous $G$ -set $H\backslash G:=$

$\{Hg|g\in G\}$ . TWO $G$ -sets $H\backslash G$ and $K\backslash G$ are isomorphic if and only if $H=_{G}K$,
that is, $H$ is $G$ -conjugate to $K$. Thus this ring is additively a free abelian
group on $\{[H\backslash G]|(H)\in Cl(G)\}$ , where $Cl(G)$ is the conjugacy classes $(H)$ of
subgroups $H$ of $G$ .

A suPer class function is a map of the set of subgroups of $G$ to $Z$ which is
constant on each conjugacy class of subgroups. Let $\tilde{A}(G):=Z^{Cl(G)}$ be the ring
of integral valued super class functions. For any subgroup $S$ of $G$ , the map
$[X]-\Rightarrow|X^{s}|$ , the number of fixed-points, extends to a ring homomorphism $\varphi_{S}$ :
$A(G)arrow Z$, and so we have a ring homomorphism

(1) $\varphi$ $:= \prod_{(S)}\varphi_{S}$ : $A(G)arrow\tilde{A}(G):=Z^{Cl(G)}$ ; $[X]-(|X^{s}|)$ .

It is well-known that this maP is injective. Thus we can identify any element
$x$ of $A(G)$ with the super class function $\varphi(x)$ , and so we simply write

$x(S)$ $:=\varphi(x)(S)=\varphi_{S}(x)$

for a subgroup $S$ of $G$ . Hence we can view the unit group $A(G)^{*}$ as a sub-
group of $\{\pm 1\}^{Cl(G)}$ .

NOW, tom Dieck proved by a geometric method that for any $RG$-module $V$

the function
$u(V)$ : $S\mapsto$ sgn $\dim V^{s}$

belongs to the Burnside ring $A(G)$ , where sgn $m:=(-1)^{m}([Di79$ , Proposition
5.5.9]). The first purpose of this paper is to prove this fact by a purely alge-


