J. Math. Soc. Japan Vol. 42, No. 1, 1990

On the unit groups of Burnside rings

Dedicated to the memory of Professor Akira Hattori

By Tomoyuki YOSHIDA

(Received Nov. 13, 1986) (Revised Sept. 26, 1988)

1. Introduction.

Let G be a finite group. The set $A^+(G)$ of the G-isomorphism classes of finite right G-sets makes a commutative semi-ring with respect to disjoint union + and Cartesian product \times . Its Grothendieck ring is called the *Burnside ring* of G and is denoted by A(G). A finite (right) G-set is the disjoint union of its orbits and each orbit is G-isomorphic to a homogeneous G-set $H \setminus G :=$ $\{Hg | g \in G\}$. Two G-sets $H \setminus G$ and $K \setminus G$ are isomorphic if and only if $H=_G K$, that is, H is G-conjugate to K. Thus this ring is additively a free abelian group on $\{[H \setminus G] | (H) \in Cl(G)\}$, where Cl(G) is the conjugacy classes (H) of subgroups H of G.

A super class function is a map of the set of subgroups of G to Z which is constant on each conjugacy class of subgroups. Let $\tilde{A}(G) := \mathbb{Z}^{Cl(G)}$ be the ring of integral valued super class functions. For any subgroup S of G, the map $[X] \mapsto |X^S|$, the number of fixed-points, extends to a ring homomorphism φ_S : $A(G) \to \mathbb{Z}$, and so we have a ring homomorphism

(1)
$$\varphi := \prod_{(S)} \varphi_S \colon A(G) \longrightarrow \widetilde{A}(G) := \mathbf{Z}^{Cl(G)}; \quad [X] \longmapsto (|X^S|).$$

It is well-known that this map is injective. Thus we can identify any element x of A(G) with the super class function $\varphi(x)$, and so we simply write

$$x(S) := \varphi(x)(S) = \varphi_S(x)$$

for a subgroup S of G. Hence we can view the unit group $A(G)^*$ as a subgroup of $\{\pm 1\}^{Cl(G)}$.

Now, tom Dieck proved by a geometric method that for any RG-module V the function

$$u(V): S \longrightarrow \operatorname{sgn} \dim V^{S}$$

belongs to the Burnside ring A(G), where sgn $m := (-1)^m ([Di79, Proposition 5.5.9])$. The first purpose of this paper is to prove this fact by a purely alge-