An invariant of manifold pairs and its applications

By Mikiya Masuda

(Received May 23, 1988)
(Revised Sept. 14, 1988)

$\S 0$. Introduction.

Following [3], [6] let $\Theta^{m, n}$ be the set of h-cobordism classes of pairs (S^{m}, K) consisting of an oriented homotopy n-sphere K embedded in the oriented m sphere S^{m}. It forms an abelian group under connected sum of pairs and the inverse element of (S^{m}, K), denoted by $-\left(S^{m}, K\right)$, is given by reversing both orientations of S^{m} and K. In case $m-n \geqq 3$ and $n \geqq 5, \Theta^{m, n}$ can be regarded as the isotopy classes of such pairs $\left(S^{m}, K\right)$ by the h-cobordism theorem for pairs. Henceforth we will assume $m-n \geqq 3$ and $n \geqq 5$.

The group $\Theta^{m, n}$ is well understood by the work of J. Levine [6]. A result of [6] says that $\Theta^{m, n}$ has a free part of rank one if and only if $n+1 \equiv 0(\bmod 4)$ and $3(n+1) \geqq 2 m$, and is finite otherwise. Moreover Levine's work implicitly says that in case $3 n \geqq 2 m$, there is a homomorphism called the signature of knots

$$
\sigma: \Theta^{m, n} \longrightarrow \boldsymbol{Q}
$$

and that
(0.1) the kernel of σ is finite.

When there is a Seifert surface for $K, \sigma\left(S^{m}, K\right)$ is defined as the signature of the Seifert surface. It is easily checked that the value is independent of the choice of a Seifert surface (here we need the assumption $3 n \geqq 2 m$). Moreover it immediately follows from the definition that the signature of a Seifert surface is additive with respect to connected sum of pairs. Every knot does not have a Seifert surface, but certain times connected sum of it necessarily has a Seifert surface. Hence one can extend the domain of σ to the whole group $\Theta^{m, n}$ by virtue of the additivity property of signature with respect to connected sum.

In this paper we intend to extend the domain of σ to a more general family of pairs (M, F) consisting of a connected, closed, oriented m-dimensional smooth manifold M and a connected closed oriented n-dimensional smooth submanifold F of M. We require this additivity property:

$$
\begin{equation*}
l\left(\left(M_{1}, F_{1}\right) \#\left(M_{2}, F_{2}\right)\right)=l\left(M_{1}, F_{1}\right)+l\left(M_{2}, F_{2}\right) . \tag{AP}
\end{equation*}
$$

