An invariant of manifold pairs and its applications

By Mikiya MASUDA

(Received May 23, 1988) (Revised Sept. 14, 1988)

§0. Introduction.

Following [3], [6] let $\Theta^{m,n}$ be the set of *h*-cobordism classes of pairs (S^m, K) consisting of an oriented homotopy *n*-sphere K embedded in the oriented *m*-sphere S^m . It forms an abelian group under connected sum of pairs and the inverse element of (S^m, K) , denoted by $-(S^m, K)$, is given by reversing both orientations of S^m and K. In case $m-n \ge 3$ and $n \ge 5$, $\Theta^{m,n}$ can be regarded as the isotopy classes of such pairs (S^m, K) by the *h*-cobordism theorem for pairs. Henceforth we will assume $m-n \ge 3$ and $n \ge 5$.

The group $\Theta^{m,n}$ is well understood by the work of J. Levine [6]. A result of [6] says that $\Theta^{m,n}$ has a free part of rank one if and only if $n+1\equiv 0 \pmod{4}$ and $3(n+1)\geq 2m$, and is finite otherwise. Moreover Levine's work implicitly says that in case $3n\geq 2m$, there is a homomorphism called the signature of knots

$$\sigma: \, \Theta^{m, n} \longrightarrow Q$$

and that

(0.1) the kernel of σ is finite.

When there is a Seifert surface for K, $\sigma(S^m, K)$ is defined as the signature of the Seifert surface. It is easily checked that the value is independent of the choice of a Seifert surface (here we need the assumption $3n \ge 2m$). Moreover it immediately follows from the definition that the signature of a Seifert surface is additive with respect to connected sum of pairs. Every knot does not have a Seifert surface, but certain times connected sum of it necessarily has a Seifert surface. Hence one can extend the domain of σ to the whole group $\Theta^{m,n}$ by virtue of the additivity property of signature with respect to connected sum.

In this paper we intend to extend the domain of σ to a more general family of pairs (M, F) consisting of a connected, closed, oriented *m*-dimensional smooth manifold *M* and a connected closed oriented *n*-dimensional smooth submanifold *F* of *M*. We require this additivity property:

(AP)
$$l((M_1, F_1) # (M_2, F_2)) = l(M_1, F_1) + l(M_2, F_2).$$