On the Milnor number of a generic hyperplane section

By Shintaro MIMA

(Received Sept. 13, 1988)

§0. Introduction.

Let $F(z_1, \dots, z_n)$ be an analytic function on an open neighbourhood of the origin $\vec{0}$ in \mathbb{C}^n with $F(\vec{0})=0$ and let $V=F^{-1}(0)$. Suppose that F(z) has an isolated critical point at the origin. Then for sufficiently small $\varepsilon > 0$, the map $\phi: S_{\varepsilon} - K_{\varepsilon} \rightarrow S^1$ which is defined by $\phi(z)=F(z)/|F(z)|$ gives a smooth fiber bundle, which is called the Milnor fibration. Here $S_{\varepsilon}=\{z\in\mathbb{C}^n\mid |z|=\varepsilon\}$, $K_{\varepsilon}=S_{\varepsilon}\cap V$ and $S^1=\{z\in\mathbb{C}\mid |z|=1\}$. Moreover the fiber $X_t=\phi^{-1}(t)$ is an (n-2)-connected 2(n-1)-dimensional smooth manifold and has the homotopy type of a bouquet $S^{n-1}\vee \cdots \vee S^{n-1}$ of (n-1)-spheres ([3]). $\mu^{(n)}=$ the (n-1)-th Betti number of X_t is usually called the Milnor number of F (or V). It is important to calculate the Milnor number in order to study topological properties of V. Suppose that F is non-degenerate and convenient, then the beautiful formula by Kouchnirenko ([2]) says that $\mu^{(n)}=\nu^{(n)}$, where $\nu^{(n)}$ is the Newton number of F (§ 1). By this formula, we can calculate the Milnor number via the Newton boundary of F.

Let $L = \{z_n = a_1 z_1 + \dots + a_{n-1} z_{n-1}\}$ be a generic hyperplane through the origin $\vec{0}$. $V \cap L = f^{-1}(0)$ is called a generic hyperplane section, where $f(z_1, \dots, z_{n-1}) = F(z_1, \dots, z_{n-1}, a_1 z_1 + \dots + a_{n-1} z_{n-1})$. f has also an isolated critical point at the origin and its Milnor number $\mu^{(n-1)}$ is independent of the choice of L. Similarly $\mu^{(i)}$ $(1 \le i \le n-1)$ can be defined and we define μ^* by $\mu^* = (\mu^{(n)}, \mu^{(n-1)}, \dots, \mu^{(1)})$. It is known that μ^* is determined by F([7]). However it is not known how μ^* can be calculated for a given F. Because, even if F is non-degenerate, f is not necessarily non-degenerate. Hence we cannot apply Kouchnirenko's formula even to $\mu^{(n-1)}$. If f is degenerate, then $\mu^{(n-1)} \ge \nu^{(n-1)}$ ([2]) and similarly $\mu^{(i)} \ge \nu^{(i)}$ $(1 \le i \le n-1)$. Thus in order to calculate μ^* , we want to know how the degeneracy index $\alpha^{(i)} = \mu^{(i)} - \nu^{(i)}$ ([4]) is determined by F. In this paper, we will show the following result.

THEOREM A. Let F(x, y, z) be an analytic function on an open neighbourhood of the origin in \mathbb{C}^3 with $F(\vec{0})=0$. Suppose that F has an isolated critical point at the origin and that F is non-degenerate and convenient. Let z=ax+bybe a generic hyperplane and let f(x, y)=F(x, y, ax+by). Let $\mu^{(2)}$ and $\nu^{(2)}$ be the Milnor number and the Newton number of f respectively. Then the degeneracy