On Jacobian fibrations on the Kummer surfaces of the product of non-isogenous elliptic curves

By Keiji Oguiso

(Received Aug. 17, 1988)

Introduction.

Let X be a Kummer surface obtained by the minimal resolution of the quotient surface of the product abelian surface $E \times F$ by the inversion automorphism, where E and F are arbitrarily fixed complex elliptic curves which are not mutually isogenous. As is well-known, X is an algebraic $K 3$ surface.

This paper is concerned with Jacobian fiber space structures on X, i.e., elliptic fiber space structures with a section on X, or in other words, structures as an elliptic curve over $\boldsymbol{C}\left(\boldsymbol{P}^{1}\right)$. By \mathscr{f}_{x} we denote the set of all Jacobian fibrations of X.

Let us recall that any elliptic fibration of X is given by the morphism $\Phi_{|\theta|}: X \rightarrow \boldsymbol{P}^{1}$ defined by the complete linear system $|\Theta|$ which contains a divisor having the same type as a non-multiple singular fiber of an elliptic surface. By definition, an irreducible curve C is a section of $\Phi_{|\theta|}$ if and only if C satisfies $C \cdot \Theta=1$. We note that every section of $\Phi_{|\theta|}$ is a nodal curve, i. e., a non-singular rational curve whose self-intersection number is -2 . The group $\operatorname{Aut}(X)$ acts on g_{X} in an obvious manner ; $f: \Phi_{|\theta|} \rightarrow \Phi_{|f(\theta)|}$ for $f \in \operatorname{Aut}(X)$.

By Sterk [12], the orbit space $g_{X} / \operatorname{Aut}(X)$ is finite, i.e., the number of non-isomorphic Jacobian fibrations of X is finite.

The purpose of this paper is to describe all Jacobian fibrations of X modulo isomorphism, or saying more clearly, to find a minimal complete set of representatives of the orbit space $g_{x} / \operatorname{Aut}(X)$.

As a first consequence of this paper, we see that g_{X} is divided into eleven $\operatorname{Aut}(X)$-stable subsets g_{1}, \cdots, g_{11} by types of the singular fibers, and the Mordell-Weil group of its member is calculated for each $g_{m}(m=1, \cdots, 11)$ as follows (Table A, Theorem (2.1) in §2). Here, for example, by $2 \mathrm{I}_{8}+8 \mathrm{I}_{1}$ we mean two singular fibers of type I_{8} (Kodaira's notation) and eight singular fibers of type I_{1}.

We note that there exist infinitely many nodal curves on X since X has a Jacobian fibration whose Mordell-Weil group is an infinite group by Table A. From this fact we can construct infinitely many Jacobian fibrations of X.

