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1. Introduction.

The purpose of this paper is to investigate some fundamental properties for
an occupation time of a measure-valued branching diffusion process $X(t)$ . The
process $X(t)$ arises as a high density limit of a critical branching Brownian
motion on $R^{d}$ (see Dawson [1] and Watanabe [7]), hence $X(t)$ may be considered
as a model describing an evolution of population with spatial migration.

One of the most important problems is concerned with the limiting distri-
bution of the process $X(t)$ as $tarrow\infty$ . It is well-known that if the initial state
$X(O)$ is a finite measure, then the total mass process of $X(t)$ is equivalent to a
one-dimensional continuous state critical branching process and hence extinction
occurs almost surely. But if $X(O)$ has an infinite total mass, then interesting
phenomena arise. Namely, assuming that $X(O)$ is the Lebesgue measure on $R^{d}$ ,

Dawson [1] proved the following:
(i) If $d\leqq 2$ , then $X(t)$ converges vaguely to the zero measure as $tarrow\infty$ in

probability.
(ii) If $d\geqq 3$ , then the distribution of $X(t)$ converges weakly to a non-trivial

stationary distribution as $tarrow\infty$ .
Furthermore, under the same initial condition, Iscoe [3] obtained the following

limit theorems for the occupation time process $Y(t)= \int_{0}^{t}X(s)ds$ .
(iii) If $d=1$ , then $P( \lim_{tarrow\infty}Y(t, K)<\infty)=1$ for every compact set $K$.
(iv) If $d=2$ , then $P( \lim_{tarrow\infty}Y(t, G)=\infty)=1$ for every non-empty open set $G$ .
(v) If $d\geqq 3$ , then $P( \lim_{tarrow\infty}Y(t)/t=\lambda(vaguely))=1$ , where $\lambda$ denotes the

Lebesgue measure on $R^{d}$ .
However, since the above results (iii) and (iv) seem rather crude, we would

like to investigate more detailed properties for the occupation time process $Y(t)$ .
It is well known that the Brownian local time is often used to characterize

the limiting process concerning an occupation time of a one-dimensional Brownian
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