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\S 0. Introduction.

The purpose of this paper is to investigate the phenomena that a sequence
of Riemannian manifolds $M_{i}$ converges to ones with lower dimension, $N$, with
respect to the Hausdorff distance, which is introduced in [11]. We have studied
this phenomena in [7] and proved there that $M_{i}$ is a fibre bundle over $N$ with
infranilmanifold fibre. In this paper, we study which fibre bundle it is, and
give a necessary and sufficient condition. We will describe it in Theorem 0-1
and 0-7.

THEOREM 0-1. Let $M_{i}$ be a sequence of $n+m$-dimensional compact Rieman-
nian manifolds and $N$ be an n-dimensional compact Riemannian manifold. Assume

(0-2-1) $M_{i}$ converges to $N$ with respect to the Hausdorff distance,

(0-2-2) sectional curvature of $M_{i}|\leqq 1$ .
Then, for $suJficiently$ large $i$ , there exists a map $\pi_{i}$ : $M_{i}arrow N$ such that the follow-
ing hold.

(0-3-1) $\pi_{i}$ is a fibre bundle.

(0-3-2) $\pi_{i}^{-1}(p)=G/\Gamma$ , where $G$ is a nilpotent Lie group and $\Gamma$ is a discrete group
of affine transformations of $G$ satisfying $[\Gamma:G\cap\Gamma]<\infty$ . Here we put the
(unique) connection on $G$ which makes all right invariant vector field parallel,
and $G$ is regarded to be a group of $aJfine$ transformations on $G$ by right
multiplication.

(0-3-3) The structure group of $\pi_{i}$ is contained in the skew product of
$C(G)/(C(G)\cap\Gamma)$ and Aut $\Gamma$ , where $C(G)$ denotes the center of $G$ .

REMARK 0-4. Statements (0-3-1) and (0-3-2) were proved in [7].

REMARK 0-5. [7, 0-1-3] also holds. Namely $\pi_{i}$ is an almost Riemannian
submersion in the sense stated there.
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