An elementary proof of Yoshida's inequality for block designs which admit automorphism groups

By Tsuyoshi ATSUMI

(Received July 9, 1987) (Revised Dec. 16, 1987)

1. Introduction.

The main purpose of this paper is to give an elementary proof of Yoshida's inequality [5]. An incidence structure is a triple $D=(X, B, \mathcal{J})$, where X is a set of points, B is a set of blocks and \mathcal{J} is a relation of incidence between points and blocks. A 2- (v, k, λ) design is an incidence structure (X, B, \mathcal{J}) satisfying the following requirements:

- (1) |X| = v.
- (2) Each block is incident with k points.
- (3) Any 2 points are incident with λ blocks.

A 2- (v, k, λ) design is often called a block design. Let b be the total number of blocks. Note that each point of X is contained in exactly r blocks. We set $n=r-\lambda$, and we call n the order of the 2-design (X, B, \mathcal{J}) . These parameters satisfy the following relations:

$$vr = bk, \qquad (v-1)\lambda = r(k-1). \tag{1}$$

The incidence matrix A of a block design (X, B, \mathcal{J}) is the $v \times b$ matrix whose rows are indexed by points and whose columns are indexed by blocks, with the entry in row x and column β being 1 if $x\mathcal{J}\beta$ and 0 otherwise. (The notation " $x\mathcal{J}\beta$ " means that x is incident with β .) The conditions that (X, B, \mathcal{J}) is a block design can be expressed in terms of A:

$$AJ = rJ, \qquad JA = kJ, \tag{2}$$

$$AA^t = nI + \lambda J. \tag{3}$$

(Here, throughout this paper, I is the identity matrix and J the matrix with every entry 1 of appropriate size.) From (3) it follows that if $\lambda < r$, then

$$\det \left(AA^{t}\right) = rkn^{v-1} \neq 0,$$

This research was partially supported by Grant-in-Aid for Scientific Research (No. 62540057), Ministry of Education, Science and Culture.