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1. Introduction.

The main purpose of this paper is to give an elementary proof of Yoshida’s
inequality [5]. An incidence structure is a triple $D=(X, B, \mathcal{I})$ , where $X$ is a
set of points, $B$ is a set of blocks and $\mathcal{I}$ is a relation of incidence between
points and blocks. A $2-(v, k, \lambda)$ design is an incidence structure (X, $B,$ $\mathcal{I}$)

satisfying the following requirements:

(1) $|X|=v$ .
(2) Each block is incident with $k$ points.
(3) Any 2 points are incident with $\lambda$ blocks.

A $2-(v, k, \lambda)$ design is often called a block design. Let $b$ be the total number
of blocks. Note that each point of $X$ is contained in exactly $r$ blocks. We set
$n=r-\lambda$ , and we call $n$ the order of the 2-design (X, $B,$ $\mathcal{I}$). These parameters
satisfy the following relations:

$vr=bk$ , $(v-1)\lambda=r(k-1)$ . (1)

The incidence matrix $A$ of a block design (X, $B,$ $\mathcal{I}$) is the $v\cross b$ matrix
whose rows are indexed by points and whose columns are indexed by blocks,
with the entry in row $x$ and column $\beta$ being 1 if $x\mathcal{I}\beta$ and $0$ otherwise. (The

notation “
$x\mathcal{I}\beta$

’ means that $x$ is incident with $\beta.$ ) The conditions that (X, $B,$ $\mathcal{I}$)

is a block design can be expressed in terms of $A$ :

$AJ=rJ$ , $JA=kJ$ , (2)

$AA^{t}=nI+\lambda J$ . (3)

(Here, throughout this paper, $I$ is the identity matrix and $J$ the matrix with
every entry 1 of appropriate size.) From (3) it follows that if $\lambda<r$ , then

det $(AA^{t})=rkn^{v- 1}\neq 0$ ,
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