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A note on Martin boundary of angular regions
for Schrodinger equations
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We denote by $\Omega$ the punctured unit disk $0<|z|<1$ and consider the Martin
compactification $\Omega_{P}^{*}$ ([4, p. 166]) of $\Omega$ with respect to a Schrodinger equation

(1) $(-\Delta+P(z))u(z)=0$ $( \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}},$ $z=x+yi)$

with its potential $P$ on $\Omega$ . The potential $P$ on $\Omega$ is assumed to be nonnegative
and locally Holder continuous on $0<|z|\leqq 1$ . We also consider the Martin com-
pactification $A_{P}^{*}$ of an angular region $A$ with radius 1 and vertex at the origin
$z=0$ with respect to (1). Let $\overline{\Omega}$ and $\overline{A}$ be the Euclidean closures of $\Omega$ and $A$ ,
respectively. One might ask the following

QUESTION 1. Does $Af=\overline{A}$ for all angular regions $A$ imply $\Omega f=\overline{\Omega}P$

Here the equality $\Omega_{P}^{*}=\overline{\Omega}$ ( $A_{P}^{*}=\overline{A}$ , resp.) means that the identity mapping
of $\Omega$ ( $A$ , resp.) can be extended to a homeomorphism of $\Omega_{P}^{*}$ ( $A_{P}^{*}$ , resp.) onto $\overline{\Omega}$

( $\overline{A}$ , resp.).

For a point $p$ in the Euclidean boundary $\partial\Omega$ ( $\partial A$ , resp.) of $\Omega$ ( $A$ , resp.), we
denote by $\Omega_{P}^{*}(p)$ ( $A_{P}^{*}(p)$ , resp.) the set of all Martin boundary point $\zeta^{*}$ of $\Omega(A$ ,
resp.) for which there exists a sequence $\{\zeta_{n}\}_{1}^{\infty}$ in $\Omega$ ( $A$ , resp.) converging to $P$

with respect to the Euclidean topology and at the same time converging to $\zeta^{*}$

with respect to the Martin topology. We call $\Omega_{P}^{*}(p)$ ( $A_{P}^{*}(p)$ , resp.) the Martin
boundary of $\Omega$ ( $A$ , resp.) over $p$ . We also denote by $\Omega_{P.1}^{*}(p)$ ( $A_{P,1}^{*}(p)$ , resp.) the
set of Martin minimal boundary points over $p,$ $i.e$ . the subset of $\Omega_{P}^{*}(p)(A_{P}^{*}(p)$ ,
resp.) consisting of minimal points. In terms of $\Omega_{P,1}^{*}(0)$ and $A_{P.1}^{*}(0)$ , Question 1
can be reformulated as

QUESTION 2. Does $A_{P,1}^{*}(0)=$ { $one$ pojnt} for all angular regions $A$ imply
$\Omega B_{1}(0)=\{one$ point $\}^{\mathcal{P}}$

Since $P$ is locally Holder continuous apart from the origin, we have $\Omega_{P}^{*}-\Omega_{P}^{*}(0)$

$=\overline{\Omega}-\{0\}$ and $A_{P}^{*}-A_{P}^{*}(0)=\overline{A}-\{0\}$ (cf. [1]). By an argument similar to that
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