J. Math. Soc. Japan Vol. 41, No. 2, 1989

On a question raised by Conway-Norton

By Mong-Lung LANG

(Received Feb. 16, 1987) (Revised Nov 26, 1987)

0. Introduction.

Let G be a finite group and F be the collection of all modular functions f(z) satisfying:

(1) f(z) is a modular function with respect to a discrete subgroup Γ of $SL_2(\mathbf{R})$ of the first kind. (i.e. f(z) is meromorphic on $H^*=H \cup \{\text{cusps of } \Gamma\}$ where H is the upper half plane.)

(2) The genus of Γ is zero and f(z) is a generator of a function field of Γ (i.e. the genus of $\Gamma \setminus H^*$ is zero and f(z) is a generator of a function field of $\Gamma \setminus H^*$).

(3) At $z=i\infty$, f(z) has a Fourier expansion of the form:

$$q^{-1} + a_0 + \sum_{n=1}^{\infty} a_n q^n \qquad (q = e^{2\pi i z}).$$

In [2], Conway and Norton have assigned a "Thompson series" of the form:

$$T_{\sigma} = q^{-1} + H_1(\sigma)q + H_2(\sigma)q^2 + \cdots \in F$$

to each element σ of the Fischer-Griess "Monster" group M and conjectured that H_n are characters of M for all n. This remarkable connection between the "Monster" M and modular functions is called *Monstrous Moonshine*.

One of the problem which arose from Conway-Norton paper is that

(*) For each element σ in $\cdot 0$, is there a class of elements σ_1 in M whose Thompson series T_{σ_1} has a form $\Theta_{\sigma}(z)/\eta_{\sigma}(z)$ +constant? (For the definition of $\eta_{\sigma}(z)$ and $\Theta_{\sigma}(z)$ see (1.3) and (1.4).)

In [2], Conway and Norton studied elements in $\cdot 0$ of weight 0 and proved that (*) is true for elements of weight 0 (i.e. if σ is of weight 0, then there is a class of elements σ_1 in M whose Thompson series T_{σ_1} has a form $\Theta_{\sigma}(z)/\eta_{\sigma}(z)$ +constant). In [6], Kondo and Tasaka studied elements in M_{24} (M_{24} can be naturally embedded in $\cdot 0$) and proved that (*) is true for elements in M_{24} . Recently, Kondo [8] calculated $\Theta_{\sigma}(z)$ for σ in $2^{12}M_{24} \setminus M_{24}$ and proved that (*)