On a question raised by Conway-Norton

By Mong-Lung LaNG

(Received Feb. 16, 1987)
(Revised Nov 26, 1987)

0. Introduction.

Let G be a finite group and F be the collection of all modular functions $f(z)$ satisfying :
(1) $f(z)$ is a modular function with respect to a discrete subgroup Γ of $S L_{2}(\boldsymbol{R})$ of the first kind. (i.e. $f(z)$ is meromorphic on $H^{*}=H \bigcup\{$ cusps of $\Gamma\}$ where H is the upper half plane.)
(2) The genus of Γ is zero and $f(z)$ is a generator of a function field of Γ (i.e. the genus of $\Gamma \backslash H^{*}$ is zero and $f(z)$ is a generator of a function field of $\Gamma \backslash H^{*}$).
(3) At $z=i \infty, f(z)$ has a Fourier expansion of the form:

$$
q^{-1}+a_{0}+\sum_{n=1}^{\infty} a_{n} q^{n} \quad\left(q=e^{2 \pi i z}\right)
$$

In [2], Conway and Norton have assigned a "Thompson series" of the form:

$$
T_{\sigma}=q^{-1}+H_{1}(\sigma) q+H_{2}(\sigma) q^{2}+\cdots \in F
$$

to each element σ of the Fischer-Griess "Monster" group M and conjectured that H_{n} are characters of M for all n. This remarkable connection between the "Monster" M and modular functions is called Monstrous Moonshine.

One of the problem which arose from Conway-Norton paper is that
(*) For each element σ in $\cdot 0$, is there a class of elements σ_{1} in M whose Thompson series $T_{\sigma_{1}}$ has a form $\Theta_{\sigma}(z) / \eta_{\sigma}(z)+$ constant? (For the definition of $\eta_{\sigma}(z)$ and $\Theta_{\sigma}(z)$ see (1.3) and (1.4).)

In [2], Conway and Norton studied elements in $\cdot 0$ of weight 0 and proved that $(*)$ is true for elements of weight 0 (i.e. if σ is of weight 0 , then there is a class of elements σ_{1} in M whose Thompson series $T_{\sigma_{1}}$ has a form $\Theta_{\sigma}(z) / \eta_{\sigma}(z)$ +constant). In [6], Kondo and Tasaka studied elements in M_{24} (M_{24} can be naturally embedded in $\cdot 0$) and proved that (*) is true for elements in M_{24}. Recently, Kondo [8] calculated $\Theta_{\sigma}(z)$ for σ in $2^{12} M_{24} \backslash M_{24}$ and proved that (*)

