A note on fundamental dimensions of Whitney continua of graphs

By Hisao KATO

(Received Sept. 28, 1987)

1. Introduction.

By a *continuum*, we mean a compact connected metric space. Let X be a continuum with metric d. By the *hyperspace* of X, we mean

 $C(X) = \{A \mid A \text{ is a nonempty subcontinuum of } X\}$

with the Hausdorff metric d_H , i.e., $d_H(A, B) = \inf\{\varepsilon > 0 \mid U(A, \varepsilon) \supset B \text{ and } U(B, \varepsilon) \subseteq A\}$, where $U(A, \varepsilon) = \{x \in X \mid d(x, A) < \varepsilon\}$. In [22], Whitney showed that for any continuum X there exists a map $\omega : C(X) \rightarrow [0, \omega(X)]$ satisfying

- (1) $\omega(\{x\})=0$ for every $x \in X$, and
- (2) if A, $B \in C(X)$, $A \subset B$ and $A \neq B$, then $\omega(A) < \omega(B)$.

Any such map ω is called a *Whitney map*. We may think of the map ω as measuring the size of a continuum. It is well-known that every Whitney map ω is monotone, i.e., $\omega^{-1}(t)$ is a continuum for each $0 < t < \omega(X)$. The continuum $\omega^{-1}(t)$ $(0 \le t < \omega(X))$ is called a *Whitney continuum*. Note that $\omega^{-1}(0)$ is homeomorphic to X and $\omega^{-1}(\omega(X)) = \{X\}$. Naturally, we are interested in the structure of $\omega^{-1}(t)$ $(0 < t < \omega(X))$. Let X be a continuum. Then the fundamental dimension Fd(X) of X is defined as follows (see [1] or [16]): $Fd(X) = \min\{\dim Z | Z$ is a continuum such that Z has the same shape as X $\}$. In particular, if P is a compact connected polyhedron, then $Fd P = \min\{\dim Z | Z \text{ is a compact connected} polyhedron such that Z has the same homotopy type as P<math>\}$.

In [11] and [2], Kelley and Duda investigated the dimension of C(G) for a graph G. In particular, Duda described and analyzed polyhedral models for hyperspaces of graphs (see [2] and [3]). In [5, (2.4)], we showed that $\omega^{-1}(t)$ is a polyhedron for any graph G, any Whitney map ω for C(G) and $t \in [0, \omega(G)]$ (cf. [15]).

In [5, (2.9)], we defined an index n(G) for a graph G and showed that if ω is any Whitney map for C(G), then $\operatorname{Fd} \omega^{-1}(t) \leq n(G) - 1$ for each t. Also, we showed that Whitney continua of graphs admit all homotopy types of compact connected ANR's ([7]).