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1. Introduction.

We shall consider the Schrodinger equation

(1.1) $\frac{1}{i}\partial_{t}w=\Delta w+f(w)$ ,

the Klein-Gordon equation

(1.2) $\partial_{t}^{2}w=\Delta w-w+f(w)$ ,

and the wave equation

(1.3) $\partial_{t}^{2}w=\Delta w+f(w)$

for $(x, t)\in R^{n}\cross R$ , where $i=\sqrt{-1},$ $\partial_{t}=\partial/\partial t,$ $\Delta=\Sigma_{j=1}^{n}\partial_{j}^{2}(\partial_{j}=\partial/\partial x_{j})$ and $f(u)$ repre-
sents the cubic convolution nonlinearity:

(1.4) $f(w)=(V*|w|^{2})w=( \int_{R^{n}}V(x-y)|w(y)|^{2}dy)w(x)$ .

The steady state equations corresponding to (1.1), (1.2) and (1.3) have the same
form and are given by

(1.5) $-\Delta v-f(v)=\mu v$ $(\mu\in R)$ .

This equation has been studied $e.g.$ , in Gross [6], Lions [10] and Menzala [12].

In case $V=|x|^{-1},$ $(1.5)$ is known as the Hartree equation for the helium atom.
The time dependent equation (1.1) has been studied by Glassey [5], Ginibre-
Velo [4], Dias-Figueira [3], Hayashi-Tsutsumi [7] and Hayashi-Ozawa [8], and
equations (1.2) and (1.3) have been studied by Menzala-Strauss [13]. The posi-
tivity $V(x)\geqq 0$ and the symmetry $V(-x)=V(x)$ are required there. Then the
well-posedness of the Cauchy problem and the asymptotic behaviors of solutions
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