Rate of decay at high energy of local spectral projections associated with Schrödinger operators

By Kenji YAJIMA

(Received Aug. 7, 1987)

§ 1. Introduction.

Let $\tilde{\mathfrak{H}} = -(1/2)\Delta + V(x)$, $\Delta = \partial^2/\partial x_1^2 + \cdots + \partial^2/\partial x_n^2$, be a Schrödinger operator on \mathbb{R}^n , $n \ge 1$. We assume that the potential V(x) satisfies the following assumption for some $m \ge 0$.

Assumption $(A)_m$. V(x) is a real-valued C^{∞} -function of x and for any multi-index α ,

$$|\partial_x^{\alpha}V(x)| \leq C_{\alpha}(1+|x|)^{m-|\alpha|}, \quad x \in \mathbb{R}^n.$$

Then the operator $\tilde{\mathfrak{D}}$ with the domain $\mathfrak{D}(\tilde{\mathfrak{D}}) = \mathcal{S}(\mathbf{R}^n)$, the space of rapidly decreasing functions, is real symmetric in the Hilbert space $L^2(\mathbf{R}^n)$. We let $\tilde{\mathfrak{D}}$ be any one of its selfadjoint extensions and $\{E_{\tilde{\mathfrak{D}}}(I), I \in \mathfrak{B}^1\}$ the associated spectral measure. \mathfrak{B}^1 is the σ -field of Borel subsets of \mathbf{R}^1 .

The purpose of this paper is to study the spectral projections $E_{\mathfrak{F}}(I)$ at high energy and to prove, in particular, the following theorem. We denote $\tilde{m}=\max(m,2)$ and $\langle x\rangle=(1+x^2)^{1/2}$.

THEOREM 1.1. Let V(x) satisfy the assumption $(A)_m$, $m \ge 0$ and let \mathfrak{P} be a selfadjoint extension of $-(1/2)\Delta + V(x)|_{S(\mathbf{R}^n)}$, in the Hilbert space $L^2(\mathbf{R}^n)$. Then for any q > 1/2 and $\rho > 0$ there exists a constant C > 0 such that

(1.2)
$$\|\langle x \rangle^{-q} E_{\delta}([\lambda - \rho \lambda^{1/2 - 1/\tilde{m}}, \lambda + \rho \lambda^{1/2 - 1/\tilde{m}}]) \langle x \rangle^{-q} \| \leq C d_{m}(\lambda)$$
 for all $\lambda \geq 0$. Here $d_{m}(\lambda) = \langle \lambda \rangle^{-1/\tilde{m}}$ and $\langle \lambda \rangle = (1 + \lambda^{2})^{1/2}$.

- REMARK 1.2. (1) When $V(x)\equiv 0$, it is well-known that the decay rate $\lambda^{-1/2}$ is optimal. Thus the theorem implies the invariance of the decay rate of "local spectral measure" $\langle x \rangle^{-q} E_{\mathfrak{H}}([\lambda \rho, \lambda + \rho]) \langle x \rangle^{-q}$ for $m \leq 2$.
- (2) When V(x) is singular, $V \in L_{loc}^p$, p > n/2, a weaker version of (1.2) appears in Section 6.

COROLLARY 1.3. Let $\phi_j(x)$ be the normalized eigenfunction of \mathfrak{F} associated with the eigenvalue $\lambda_j \ge 0$. Then for q > 1/2,