Genus one fibered knots in lens spaces

Dedicated to Professor Junzo Tao on his 60th birthday

By Kanji Morimoto

(Received July 27, 1987)

Let M be an orientable closed 3 -manifold and K a tame knot in M. We say that K is a fibered knot if $\mathrm{Cl}(M-N(K))$ is a fiber bundle over S^{1} whose fiber is an orientable closed surface with one hole and a fiber intersects a meridian of K in a single point, where $N(K)$ is a regular neighborhood of K and $\mathrm{Cl}(\cdot)$ is the closure. In particular, we say that K is a genus one fibered knot if the fiber is a torus with one hole. Hereafter we call it GOF-knot for brevity. Then it was showed in [3] and [6] by Burde, Zieschang and González-Acũna that S^{3} contains just two GOF-knots, those are the trefoil knot and the figure eight knot.

In this paper we will determine GOF-knots in some lens spaces and show existences of lens spaces containing no GOF-knots. In fact, we have the following results.

Proposition 1. Let m be a non-negative integer and $L(m, 1)$ a lens space of type ($m, 1$), where $L(0,1)=S^{2} \times S^{1}$ and $L(1,1)=S^{3}$. Then $L(m, 1)$ contains at least two GOF-knots K_{1} and K_{2} illustrated in Figure 1 with a fiber surface as drawn, where ${ }_{m} \bigcirc$ means a surgery description of $L(m, 1)$. The orientation is given in Figure 1. The monodromy of K_{1} is presented by $\left(\begin{array}{cc}m+2 & -1 \\ 1 & 0\end{array}\right)$ and the

Figure 1.

