On classification of parabolic reflection groups in $S U(n, 1)$

By Shoichi Kitagawa

(Received May 19, 1986)
(Revised June 4, 1987)

§ 0. Introduction.

To classify reflection groups is one of the most important matter in the group theory. It attracted many mathematicians. For example, finite reflection subgroups of orthogonal group $O(n)$ are classified by Coxeter [3] - they are called the Coxeter groups - , those of the unitary group $U(n)$ are classified by Shephard and Todd [9] - they are called the unitary reflection groups - , discrete cocompact reflection subgroups of the complex motion group are classified by Popov [8] - they are called the crystallographic reflection groups - , and discrete reflection subgroups of the parabolic subgroup of the special unitary group $S U(n, 1)$ of signature ($n, 1$) are partially classified by Yoshida-Hattori [14] and Yoshida [12] - they are called the parabolic reflection groups in $S U(n, 1)$.

This paper is devoted to the complete classification of the parabolic reflection groups in $\operatorname{SU}(n, 1)$. The group $\operatorname{SU}(n, 1)$ gives rise to the group $\operatorname{Aut}(D)$ of analytic automorphisms of a domain $D=\left\{{ }^{t}\left(z, u_{1}, \cdots, u_{m}\right) \in \boldsymbol{C}^{m+1} ; 2 \operatorname{Im} z-\right.$ $\left.\Sigma\left|u_{j}\right|^{2}>0\right\}$, which is projectively equivalent to the complex n-ball $B^{n}=$ $\left\{{ }^{t}\left(z_{1}, \cdots, z_{n}\right) \in \boldsymbol{C}^{n} ; \Sigma\left|z_{j}\right|^{2}<1\right\}$. The parabolic subgroup G of $S U(n, 1)$ is identified with a subgroup of $\operatorname{Aut}(D)$ which leaves the point P at infinity fixed. Precisely speaking, reflection groups in question are discrete subgroups of G of locally finite covolume at P.

In $\S 1$, we review the structure of discrete subgroup of G. The main theorem is stated in $\S 2$. Proof is given in $\S 3$.

The author would like to thank the referee for valuable remarks.

§1. Parabolic subgroup G.

1.1. A matrix representation of G. Let V be an $(m+1)$-dimensional complex vector space with coordinates $\left(z, u_{1}, \cdots, u_{m}\right)$. Let D be a domain in V defined as follows

