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\S 0. Introduction.

To classify reflection groups is one of the most important matter in the
group theory. It attracted many mathematicians. For example, finite reflection
subgroups of orthogonal group $0(n)$ are classified by Coxeter [3] –they are
called the Coxeter groups–, those of the unitary group $U(n)$ are classified
by Shephard and Todd [9] –they are called the unitary reflection groups–,

discrete cocompact reflection subgroups of the complex motion group are classified
by Popov [8]–they are called the crystallographic reflection groups–, and
discrete reflection subgroups of the parabolic subgroup of the special unitary
group $SU(n, 1)$ of signature $(n, 1)$ are partially classified by Yoshida-Hattori
[14] and Yoshida [12] –they are called the parabolic reflection groups in
$SU(n, 1)$ .

This paper is devoted to the complete classification of the parabolic reflec-
tion groups in $SU(n, 1)$ . The group $SU(n, 1)$ gives rise to the group Aut $(D)$

of analytic automorphisms of a domain $D=t^{t}(z, u_{1}, \cdots , u_{m})\in C^{m+1}$ ; 2Im $z-$

$\sum|u_{j}|^{2}>0\}$ , which is projectively equivalent to the complex n-ball $B^{n}=$

$t^{t}(z_{1}, \cdots , z_{n})\in C^{n}$ ; $\sum|z_{j}|^{2}<1$ }. The parabolic subgroup $G$ of $SU(n, 1)$ is identified
with a subgroup of $Aut(D)$ which leaves the point $P$ at infinity fixed. Precisely
speaking, reflection groups in question are discrete subgroups of $G$ of locally
finite covolume at $P$.

In \S 1, we review the structure of discrete subgroup of $G$ . The main theo-
rem is stated in \S 2. Proof is given in \S 3.

The author would like to thank the referee for valuable remarks.

\S 1. Parabolic subgroup $G$ .
1.1. A matrix representation of $G$ . Let $V$ be an $(m+1)$-dimensional com-

plex vector space with coordinates $(z, u_{1}, \cdots , u_{m})$ . Let $D$ be a domain in $V$

defined as follows


