On a problem of Yamamoto concerning biquadratic Gauss sums, II

By Hiroshi Ito

(Received April 20, 1987)

§ 1. Introduction.

For a prime number $p \equiv 5(\bmod 8)$ take positive integers a and b such that $p=a^{2}+4 b^{2}$ and put $\omega=\omega_{p}=a+2 b i$. Consider the Gauss sum

$$
\tau_{p}=\sum_{m=1}^{p-1}\left(\frac{m}{\omega}\right)_{4} e^{2 \pi i m / p}
$$

where $\left(\frac{m}{\omega}\right)_{4}$ is the biquadratic residue symbol in Gauss' number field $\boldsymbol{Q}(i)$. We write

$$
\tau_{p}=\varepsilon_{p} \omega^{1 / 2} p^{1 / 4} \quad \text { with } \quad 0<\arg \left(\omega^{1 / 2}\right)<\frac{\pi}{4} .
$$

It is known that $\varepsilon_{p}^{4}=1$. Furthermore we put

$$
C_{p}=\sum_{m=1}^{(p-1) / 2}\left(\frac{m}{\omega}\right)_{4} .
$$

For a complex number z we denote by \bar{z} the complex conjugate of z and put $\operatorname{Re}(z)=(z+\bar{z}) / 2$ and $\operatorname{Im}(z)=(z-\bar{z}) / 2 i$. Yamamoto [10] observed that the inequality

$$
\begin{equation*}
\operatorname{Im}\left(\varepsilon_{p} \overline{C_{p}}\right)>0 \tag{1}
\end{equation*}
$$

holds for $p<4,000$ and proposed the question whether this is always true. In the previous paper [7], the author reported a counter-example for (1). At the same time, it was also mentioned that there is only one counter-example for (1) up to $1,000,000$. The purpose of this paper is to explain the tendency of the inequality (1) to be satisfied. We shall prove the following theorem.

Theorem 1. The limit

$$
\lim _{x \rightarrow \infty} \frac{\#\{p ; p \leqq x, p \equiv 5(\bmod 8), \text { the inequality (1) holds for } p\}}{\#\{p ; p \leqq x, p \equiv 5(\bmod 8)\}}
$$

where p denotes rational prime numbers, exists and lies between 0.9997 and 0.9998 .
For an element μ of $\mathcal{O}:=\boldsymbol{Z}[i]$ prime to 2 , denote by χ_{μ} the Dirichlet character modulo $2 m$ induced from $(\dot{\bar{\mu}})_{4}$ where m is the smallest positive integer contained in the ideal $\mu 0$. Then

