Asymptotic behavior of elementary solutions of transient generalized diffusion equations

By Matsuyo Tomisaki

(Received Feb. 23, 1987)

1. Introduction.

Let $\mathfrak{G}=(d/dm)(d/dx)$ be a generalized diffusion operator on an interval S and p(t, x, y) the elementary solution of the generalized diffusion equation

$$\partial u(t, x)/\partial t = \mathfrak{G}u(t, x), \quad t>0, \ x \in S,$$

in the sense of McKean [11]. We note that p(t, x, y)dm(y) is the transition probability of the generalized diffusion process having $\mathfrak S$ as the generator. In this paper we study the asymptotic behavior of p(t, x, y) for large t under the condition that $\mathfrak S$ is *transient*, i.e. $\int_0^\infty p(t, x, y)dt < \infty$, and m(x) varies regularly near the end points of S.

In the previous paper [12], we discussed the same problem for recurrent \mathfrak{G} . The results there verified rigorously long time tails, i. e. t^{-r} -decay of moments with r<1, for multiplicative stochastic processes in statistical physics. Recently Y. Okabe [15] studied the asymptotic behavior of the correlation functions of stationary solutions for Stokes-Boussinesq-Langevin equations in order to observe Alder-Wainwright effect, i. e. $t^{-3/2}$ -decay of velocity autocorrelation function for hard sphere. Our results here for transient \mathfrak{G} give an explanation for such long time tails of the type t^{-r} with $r \geq 1$ from the point of view of one-dimensional generalized diffusion processes.

In [17] we obtained a criterion, in terms of m, for the convergence of the integral $\int_1^\infty t^{\gamma} p(t, x, y) dt$. By using it, we can get a rough asymptotic behavior of p(t, x, y) for large time t. Namely, let $S=(l_1, l_2)$ with $-\infty \le l_1 < l_2 \le \infty$ and suppose that one of the following assumptions (A.1), (A.2) and (A.3) is satisfied, where $0 < \rho < 1$, L(x) is a slowly varying function, and the symbol $a(x) \sim b(x)$ as $x \to \alpha$ stands for $\lim_{x \to \alpha} a(x)/b(x) = 1$.

(A.1):
$$|l_i| < \infty$$
, $i=1, 2$, there exists the limit $\theta \equiv \lim_{x\to\infty} |m(l_2-1/x)/m(l_1+1/x)|$

This research was partially supported by Grant-in-Aid for Scientific Research (No. 62540124), Ministry of Education, Science and Culture.