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1. Introduction.

The purpose of this paper is to prove the following

THEOREM (1.1). Let $P=k[X_{1},$ $X_{2},$ $\cdots$ , $X_{n}\ovalbox{\tt\small REJECT}$ be a formal power series ring
over an algebraically closed field $k$ of ch $k\neq 2$ . Let $R=P/I$, where I is an ideal
of $P$ and suppOse that dim $R=d\geqq 2$ . Then the following two conditions are equiv-
alent.

(1) $R$ is a regular local ring.
(2) $R$ is a Cohen-Macaulay ring that possesses only finitely many isomorphism

classes of indecompOsable maximal Buchsbaum modules. (See Section 2 for the
notion of maximal Buchsbaum module.)

When this is the case, the syzygy modules of the residue class field $k$ of $R$

are the representatjves of indecompOsable maximal Buchsbaum modules and so there
are exactly $d$ non-isomorphjc indecompOsable maximal Buchsbaum modules over $R$ .

Our contribution in the above theorem is the implication (2) $\Rightarrow(1)$ . The last
assertion and the implication (1) $\Rightarrow(2)$ are due to [6] (see also [5, Theorem 3.2]),

where some consequences of the result are discussed too.
We would like to note here that the assumption $\dim R\geqq 2$ in Theorem (1.1)

is not superfluous. There actually exist non-regular Cohen-Macaulay local rings
$R$ of dim $R=1$ that possess only finitely many isomorphism classes of indecom-
posable maximal Buchsbaum modules. The typical example is the ring

$R=k[X,$ $YI/(X^{3}+Y^{2})$

( $k$ , any field), which has exactly 5 indecomposable maximal Buchsbaum modules
(cf. (5.3)). So the result of one-dimensional case seems more complicated.
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