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1. Introduction and main results.

We consider the minimal Markov process $\{X(t)\}_{t\geqq 0}$ on the nonnegative in-
tegers with a generator $A=(a_{ij})$ defined as follows. For nonnegative integers
$i$ and $j$ ,

(1.1) $a_{ij}=\beta_{i}$ if $i>0$ and $j=i+1$ ,

$=-(\beta_{i}+\delta_{i})$ if $i>0$ and $j=i$ ,

$=\delta_{i}$ if $i>0$ and $j=i-1$ ,

$=0$ otherwise,

where $\delta_{1}\geqq 0,$ $\delta_{i}>0$ for $i=2,3,$ $\cdots$ , and $\beta_{i}>0$ for $i=1,2,$ $\cdots$ Such a process is
called birth and death process. This process is strongly Markov by its minimality.
Note that if $X(s)=0$ for some instant $s>0$ , then $X(t)=0$ for all $t>s$ , that is,
the state $0$ is a trap. Also note that the state $0$ is attained from other states
with positive probability whenever $\delta_{1}>0$ . Let

$\tau_{n}(\omega)=\inf\{t>0;X(t, \omega)=n\}$

be the first passage time for $X(t)$ to $n$ . Here we do not define $\tau_{n}(\omega)$ if
$\{t;X(t, \omega)=n\}=\emptyset$ . Let $\mu_{mn}$ be the distribution of $\tau_{n}$ when the process starts
at $m$ . We denote by $\sigma_{mn}(s)$ the Laplace transform of $\mu_{mn}$ , that is,

$\sigma_{mn}(s)=E_{m}(e^{-s\epsilon_{n}})=\int_{0}^{\infty}e^{-st}\mu_{mn}(dt)$ .
Note that in the case $\delta_{1}>0$ , the total mass of $\mu_{mn}$ , $1\leqq m<n$ , is less than 1.
We set $\overline{\mu}_{mn}=\mu_{mn}/\mu_{mn}([0, \infty))$ and $\overline{\sigma}_{mn}(s)=\sigma_{mn}(s)/\sigma_{mn}(0)$ . Main purpose of this
paper is to determine the class of $\mu_{mn},$ $m<n$ , for all birth and death processes.

Let $R_{+}=[0, \infty$). Let $\mathcal{P}(R_{+})$ be the totality of probability measures on $R_{+}$ .
For $\mu\in \mathcal{P}(R_{+})$ , we denote by $\mathcal{L}\mu(s)$ its Laplace transform. Let $G$ be a pro-
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