Characterization of the class of upward first passage time distributions of birth and death processes and related results

By Makoto YAMAZATO

(Received Jan. 19, 1987)

1. Introduction and main results.

We consider the minimal Markov process $\{X(t)\}_{t\geq 0}$ on the nonnegative integers with a generator $A=(a_{ij})$ defined as follows. For nonnegative integers i and j,

(1.1)	$a_{ij} = \beta_i$	if $i > 0$ and $j = i + 1$,
	$= -(\beta_i + \delta_i)$	if $i > 0$ and $j = i$,
	$=\delta_i$	if $i > 0$ and $j = i - 1$,
	= 0	otherwise,

where $\delta_1 \ge 0$, $\delta_i > 0$ for $i=2, 3, \dots$, and $\beta_i > 0$ for $i=1, 2, \dots$. Such a process is called birth and death process. This process is strongly Markov by its minimality. Note that if X(s)=0 for some instant s>0, then X(t)=0 for all t>s, that is, the state 0 is a trap. Also note that the state 0 is attained from other states with positive probability whenever $\delta_1>0$. Let

$$\tau_n(\boldsymbol{\omega}) = \inf\{t > 0 ; X(t, \boldsymbol{\omega}) = n\}$$

be the first passage time for X(t) to n. Here we do not define $\tau_n(\omega)$ if $\{t; X(t, \omega)=n\}=\emptyset$. Let μ_{mn} be the distribution of τ_n when the process starts at m. We denote by $\sigma_{mn}(s)$ the Laplace transform of μ_{mn} , that is,

$$\sigma_{mn}(s) = E_m(e^{-s\tau_n}) = \int_0^\infty e^{-st} \mu_{mn}(dt).$$

Note that in the case $\delta_1 > 0$, the total mass of μ_{mn} , $1 \le m < n$, is less than 1. We set $\bar{\mu}_{mn} = \mu_{mn}/\mu_{mn}([0, \infty))$ and $\bar{\sigma}_{mn}(s) = \sigma_{mn}(s)/\sigma_{mn}(0)$. Main purpose of this paper is to determine the class of μ_{mn} , m < n, for all birth and death processes.

Let $\mathbf{R}_{+} = [0, \infty)$. Let $\mathcal{P}(\mathbf{R}_{+})$ be the totality of probability measures on \mathbf{R}_{+} . For $\mu \in \mathcal{P}(\mathbf{R}_{+})$, we denote by $\mathcal{L}\mu(s)$ its Laplace transform. Let G be a pro-

This research was partially supported by The Ishida Foundation.