J. Math. Soc. Japan Vol. 40, No. 3, 1988

Space curves of genus 7 and degree 8 on a non-singular cubic surface with stable normal bundle

By Tomoaki ONO

(Received Jan. 5, 1987)

Introduction.

D. Perrin showed in [8] that the normal bundles of curves of degree s^2-1 which are linked to a line by two surfaces of degree s in P^3 are semi-stable. In the case of s=3, the above curves have genus 7 and degree 8. In this paper, we shall show that the normal bundles of general non-singular curves of genus 7 and degree 8 on a non-singular cubic surface in P^3 are stable (Theorem (2.3)).

In §1 we determine divisor classes of non-singular curves of genus 7 and degree 8 on a non-singular cubic surface in P^3 . In §2 we evaluate the number of isolated singular points of a cubic surface containing the above curve (Lemma (2.2)). This evaluation plays an important role in the proof of Theorem (2.3). In §3 we give examples of non-singular curves of genus 7 and degree 8 with non-stable normal bundle. In §4 we consider a few projectively normal curves on a non-singular cubic surface which are not contained in any quadric surface.

NOTATION. Throughout this paper we shall work over the ground field C and C^* denotes the multiplicative group of C. Let X be a non-singular projective variety and let E be a vector bundle on X.

 $h^{i}(X, E) := \dim_{C} H^{i}(X, E);$ the dimension of $H^{i}(X, E),$ $H^{i}(X, E)^{\vee};$ the dual vector space of $H^{i}(X, E),$

 $E^* := \operatorname{Hom}_{\mathcal{O}_X}(E, \mathcal{O}_X)$; the dual vector bundle of E.

Moreover, if C is a curve on a surface S in P^3 , we use the same symbol C for the corresponding divisor class on S.

 I_c ; the ideal sheaf of C in P^3 , N_c ; the normal sheaf of C in P^3 , $N_{C/S}$; the normal sheaf of C in S.