Compactness of the moduli space of Yang-Mills connections in higher dimensions

By Hiraku NAKAJIMA

(Received Nov. 17, 1986)

§1. Introduction and statement of results.

In analytical aspect of the Yang-Mills theory one of the most fundamental results is the K. Uhlenbeck's compactness theorem on the moduli space of Yang-Mills connections.

The purpose of the present paper is to generalize the theorem of Uhlenbeck to higher dimensions. More precisely, let G be a compact Lie group, and $\{D(i)\}$ a sequence of Yang-Mills connections on a G-principal P over an n-dimensional Riemannian manifold M such that for some constant R

$$\int_{M} |R(i)|^2 dV \leq R < \infty.$$

Then we can state the theorem of K. Uhlenbeck:

(1.1) FACT ([8], [2]). Let $2 \leq n \leq 4$. Then there exist a subsequence $\{j\} \subset \{i\}$, a subset $M' (\subset M)$, and a Yang-Mills connection $D(\infty)$ on P over M' such that M-M' consists of at most finitely many points $\{p_1, \dots, p_l\}$, and that for each compact subset $K \subset M'$ there exist gauge transformations $g_K(j)$ of P over K so that

$$g_{\kappa}(j)^{*}(D(j)) \longrightarrow D(\infty)$$
 in C^{∞} -topology on K.

Furthermore,

a) when n=2, 3, we have M'=M,

b) when n=4, in a neighborhood of each p_k , the following happens:

If $x=(x_1, x_2, x_3, x_4)$, $|x| < \delta$, denote normal coordinates of M at p_k , then there are rescalings $\rho(j)(x)=(1/r_j)x$ of this coordinates with $r_j \rightarrow 0$ such that for each compact subset $H \subset \mathbb{R}^n$ there exist gauge transformations $\gamma_H(j)$ of $\rho(j)^*P$ over H so that

$$\gamma_H(j)^* \rho(j)^* D(j) \longrightarrow D$$
 in C^{∞} -topology on H

where D is a non-flat Yang-Mills connection on \mathbf{R}^4 with respect to the standard metric of \mathbf{R}^4 with finite action