Ruled fibrations on normal surfaces

Dedicated to Professor M. Nagata on his 60th birthday

By Fumio Sakai

(Received Nov. 6, 1986)

Let Y be a normal projective surface over C. A ruled fibration on Y over a smooth curve B is a surjective morphism $p: Y \rightarrow B$ such that the general fibre is isomorphic to \boldsymbol{P}^{1}. We have the notion of exceptional curves of the first kind in the category of normal surfaces. Namely, an irreducible curve C on Y is called an exceptional curve of the first kind if $K_{Y} C<0$ and $C^{2}<0$, where the K_{Y} denotes a canonical divisor on Y. Cf. [S3]. A minimal ruled fibration will mean a ruled fibration whose fibres contain no exceptional curves of the first kind. Given a ruled fibration on Y, contract successively all exceptional curves of the first kind in fibres, then we obtain a minimal ruled fibration. In this paper we study the structure of a normal surface Y having a minimal ruled fibration over a curve B of genus g.

In $\S 1$ we consider the structure of singular fibres. It turns out that every singular fibre is necessarily a multiple fibre and contains one or two singular points of Y. To describe a singular fibre, we observe the weighted dual graph of the inverse image of the singular fibre on the minimal resolution of Y. In $\S 2$ we introduce a nonnegative rational number τ, which measures the amount of $\operatorname{Sing}(Y)$. We have the formula: $K_{\hat{Y}}^{2}=8(1-g)-4 \tau$. Suppose that Y has singular fibres f_{i} with multiplicities $m_{i}, i=1, \cdots, k$. Then we show that $\tau \geqq \Sigma\left(1-1 / m_{i}\right)$. In §3 we define the invariants $s_{n} \in \boldsymbol{Q}$ for positive integers n. The first invariant $s=s_{1}$ is defined to be the minimum of the self-intersection numbers of all sections in the ruled fibration. Provided that Y is singular, we prove the inequality: $s \leqq g+\tau-1$. Recall that for the smooth case a theorem of Nagata [N] says that $s \leqq g$. Similarly, we define the invariants s_{n} to be $1 / n^{2}$ of the minimum of the self intersection numbers of all effective divisors of degree n over B. We show that $s_{n} \leqq 2 g /(n+1)+\tau$. The invariant $s_{*}=\inf \left\{s_{n}\right\}$ plays an important role in the numerical criterion for an ample divisor. In $\S 4$ we consider the anti-Kodaira dimension $\kappa^{-1}(Y)$. We give a classification of Y in terms of $\kappa^{-1}(Y)$ together with the numerical type of the anticanonical divisor $-K_{Y}$. For the smooth case, this was done in [S1], [S3]. We also deal with the question when Y admits another ruled fibration or an elliptic fibration. We

