Ruled fibrations on normal surfaces

Dedicated to Professor M. Nagata on his 60th birthday

By Fumio SAKAI

(Received Nov. 6, 1986)

Let Y be a normal projective surface over C. A ruled fibration on Y over a smooth curve B is a surjective morphism $p: Y \rightarrow B$ such that the general fibre is isomorphic to P^1 . We have the notion of exceptional curves of the first kind in the category of normal surfaces. Namely, an irreducible curve C on Y is called an *exceptional curve of the first kind* if $K_rC < 0$ and $C^2 < 0$, where the K_r denotes a canonical divisor on Y. Cf. [S3]. A minimal ruled fibration will mean a ruled fibration whose fibres contain no exceptional curves of the first kind. Given a ruled fibration on Y, contract successively all exceptional curves of the first kind in fibres, then we obtain a minimal ruled fibration. In this paper we study the structure of a normal surface Y having a minimal ruled fibration over a curve B of genus g.

In §1 we consider the structure of singular fibres. It turns out that every singular fibre is necessarily a multiple fibre and contains one or two singular points of Y. To describe a singular fibre, we observe the weighted dual graph of the inverse image of the singular fibre on the minimal resolution of Y. In we introduce a nonnegative rational number τ , which measures the amount of Sing(Y). We have the formula: $K_Y^2 = 8(1-g) - 4\tau$. Suppose that Y has singular fibres f_i with multiplicities m_i , $i=1, \dots, k$. Then we show that $\tau \geq \sum (1-1/m_i)$. In §3 we define the invariants $s_n \in Q$ for positive integers n. The first invariant $s=s_1$ is defined to be the minimum of the self-intersection numbers of all sections in the ruled fibration. Provided that Y is singular, we prove the inequality: $s \leq g + \tau - 1$. Recall that for the smooth case a theorem of Nagata [N] says that $s \leq g$. Similarly, we define the invariants s_n to be $1/n^2$ of the minimum of the self intersection numbers of all effective divisors of degree *n* over *B*. We show that $s_n \leq \frac{2g}{(n+1)+\tau}$. The invariant $s_* = \inf\{s_n\}$ plays an important role in the numerical criterion for an ample divisor. In we consider the anti-Kodaira dimension $\kappa^{-1}(Y)$. We give a classification of Y in terms of $\kappa^{-1}(Y)$ together with the numerical type of the anticanonical divisor $-K_{Y}$. For the smooth case, this was done in [S1], [S3]. We also deal with the question when Y admits another ruled fibration or an elliptic fibration. We