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\S 1. Introduction.

In 1961, R. Osserman showed that the Gauss map of a complete non-flat
minimal (immersed) surface in $R^{3}$ cannot omit a set of positive logarithmic
capacity ([8]). Moreover, he proved the following:

THEOREM 1.1 ([9]). Let $M$ be a mimmal surface in $R^{m}(m\geqq 3)$ , and $p$ be a
pmn $f$ of M. If all normals at pmnts of $M$ make angles of at least $\alpha$ with some
fixed direction, then

$|K(p)| \leqq\frac{1}{d(p)^{2}}\cdot\frac{16(m-1)}{\sin^{4}\alpha}$

where $K(p)$ and $d(p)$ denote the Gauss $cun$)$ature$ of Mat $p$ and the distance from
$P$ to the boundary of $M$ respectively.

Afterwards, F. Xavier gave the following improvement of the former result
of R. Osserman.

THEOREM 1.2 ([11]). The Gauss map of a complete non-flat minzmal surface
in $R^{3}$ can omit at most $\alpha x$ points of the sphere.

Recently, the author gave a generalization of this to the case of complete
minimal surfaces in $R^{m}(m\geqq 4)$ ([4], [5]). He studied also the value distribution
of the Gauss map of a complete submanifold $M$ of $C^{m}$ in the case where the
universal covering of $M$ is biholomorphic to the unit ball in $C^{n}$ ([6]).

In this paper, relating to these results we shall give the following theorem.

THEOREM I. Let $M$ be a mimmal surface in $R^{3}$ . SuppOse that the Gauss
map $G:Marrow S^{2}$ omits at least five pmnts $\alpha_{1},$

$\cdots$ , $\alpha_{5}$ . Then, there exists a $po\alpha$ tive
constant $C$ dependjng only on $a_{1},$

$\cdots$ , as such that

$|K(p)| \leqq\frac{C}{d(p)^{2}}$

for an arbitrary $p(nntp$ of $M$.


