J. Math. Soc. Japan Vol. 40, No. 2, 1988

The modified analytic trivialization of real analytic families via blowing-ups

Dedicated to Professor Yukihiro Kodama on his 60th birthday

By Etsuo YOSHINAGA

(Received Oct. 1, 1986)

Introduction.

One of the most important and interesting problems in the theory of real analytic function-germs (or singularities) is to search for "nice and natural" equivalence relations in the set of germs of analytic functions.

I am sure that the notion of blow-analytic equivalence relation defined by Professor T.-C. Kuo ([3, 4]), is one of them.

Let $F(x; p): (\mathbb{R}^n \times P, 0 \times P) \longrightarrow (\mathbb{R}, 0)$ be an analytic function, where P is a subanalytic subset of some Euclidean space. Then, T.-C. Kuo ([4]) proves the classification theorem: if for fixed $p, f_p(x):=F(x; p)$ has an isolated singularity at the origin, then there exists a finite filtration $\{P^i\}$ by subanalytic subsets P^i of the parameter space P of an analytic family F(x; p) such that the functions $f_p(x)$ parameterized by elements p of a connected component of P^i form a blow-analytic equivalence class.

The next problem to be considered would be the following: can we construct concretely the filtration $\{P^i\}$ of P for a given analytic family F(x; p)in the classification theorem or what kind of singularities form a blow-analytic equivalence class?

Several authors studied this problem, see e.g. [1, 3, 5].

In [5], it is proved that if a real analytic family F(x;t) of real analytic function-germs $f_t(x):=F(x;t):(\mathbb{R}^n, 0) \longrightarrow (\mathbb{R}, 0)$ admits a simultaneous resolution ϕ , then it admits a $\pi \circ \phi$ -MAT (see the definition (1.1)), where π is a finite succession of blowing-ups with non-singular centers of \mathbb{R}^n . So, the family $f_t(x)$ forms a blow-analytic equivalence class.

In [1] (resp. [3]), it is proved that if an analytic family F(x; t) is nondegenerate in some sense, it admits a π -MAT along the parameter space via the blowing-up π of \mathbb{R}^n at the origin (resp. a so-called toroidal embedding π). Here, it should be emphasized that the mapping π is concretely constructible from the Newton boundary of F(x; t).

In this paper, we also study this problem. The subblowing-ups and the blowing-ups of \mathbb{R}^n with the ideal centers defined by families are made use of