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Introduction.

One of the most important and interesting problems in the theory of real
analytic function-germs (or singularities) is to search for “nice and natural”
equivalence relations in the set of germs of analytic functions.

I am sure that the notion of blow-analytic equivalence relation defined by

Professor T.-C. Kuo ([3, 4]), is one of them.
Let $F(x;P);(R^{n}\cross P, O\cross P)arrow(R, 0)$ be an analytic function, where $P$ is a

subanalytic subset of some Euclidean space. Then, T.-C. Kuo ([4]) proves the
classification theorem: if for fixed $P,$ $f_{p}(x):=F(x;p)$ has an isolated singularity
at the origin, then there exists a finite filtration $\{P^{i}\}$ by subanalytic subsets $P^{i}$

of the parameter space $P$ of an analytic family $F(x;p)$ such that the functions
$f_{p}(x)$ parameterized by elements $P$ of a connected component of $P^{i}$ form a
blow-analytic equivalence class.

The next problem to be considered would be the following: can we con-
struct concretely the filtration $\{P^{i}\}$ of $P$ for a given analytic family $F(x;p)$

in the classification theorem or what kind of singularities form a blow-analytic
equivalence class?

Several authors studied this problem, see $e$ . $g$ . $[1,3,5]$ .
In [5], it is proved that if a real analytic family $F(x;t)$ of real analytic

$fu^{nction}$-germs $f_{t}(x):=F(x;t):(R^{n}, O)arrow(R, 0)$ admits a simultaneous resolu-
tion $\phi$ , then it admits a $\pi\circ\phi$-MAT (see the definition (1.1)), where $\pi$ is a finite
succession of blowing-ups with non-singular centers of $R^{n}$ . So, the family
$f_{t}(x)$ forms a blow-analytic equivalence class.

In [1] (resp. [3]), it is proved that if an analytic family $F(x;t)$ is non-
$d^{egenerate}$ in some sense, it admits a $\pi$-MAT along the parameter space via
the blowing-up $\pi$ of $R$ “ at the origin (resp. a so-called toroidal embedding $\pi$ ).

Here, it should be emphasized that the mapping $\pi$ is concretely constructible
from the Newton boundary of $F(x;t)$ .

In this paper, we also study this problem. The subblowing-ups and the
blowing-ups of $R^{n}$ with the ideal centers defined by families are made use of


