A construction of certain 3-manifolds with orientation reversing involution

By Masako Kobayashi

(Received Aug. 11, 1986)
(Revised Oct. 1, 1986)

1. Introduction.

In his paper [4], Kawauchi proved that if a closed orientable 3-manifold M admits an orientation reversing involution, then the torsion part of the first integral homology group, Tor $H_{1}(M ; Z)$, is isomorphic to $A \oplus A$ or $Z_{2} \oplus A \oplus A$ where A is an abelian group of finite order. Moreover, for any given abelian group G with $\operatorname{Tor} G \cong A \oplus A$, there exists a closed orientable irreducible 3-manifold M admitting an orientation reversing involution with $H_{1}(M ; Z) \cong G$. And if M is a closed orientable 3-manifold admitting an orientation reversing involution with $H_{1}(M ; Z) \cong Z_{2} \oplus A \oplus A$ where A is an abelian group of odd order, then M must be a connected sum of P^{3} and a certain manifold.

In this paper, for the remaining cases, we will prove the following theorems.
Theorem 1. For any abelian group G with $\operatorname{Tor} G \cong Z_{2} \oplus A \oplus A$ (possibly, $A=0)$ and $G / \operatorname{Tor} G \neq 0$, there exists a closed orientable irreducible 3-manifold M admitting an orientation reversing involution with $H_{1}(M ; Z) \cong G$.

Theorem 2. For any abelian group $G \cong Z_{2} \oplus A \oplus A$ where A is an abelian group of non zero even order, there exists a closed orientable irreducible 3-manifold M admitting an orientation reversing involution with $H_{1}(M ; Z) \cong G$.

We refer to [2] and [3] for general definitions and terminology.

2. Proof of Theorem 1.

We identify a 3 -sphere S^{s} with $R^{s} \cup\{\infty\}$, and consider the antipodal map $\tau: S^{3} \rightarrow S^{3}$ by $\tau(x, y, z)=(-x,-y,-z) \tau(\infty)=(\infty)$.

Lemma 3. There exists a closed orientable irreducible 3-manifold M admitting an orientation reversing involution with $H_{1}(M ; Z) \cong Z \oplus Z_{2}$.

Proof. Consider a graph T in S^{3} as in Figure 1. We choose the graph T so that T contains the origin $0=(0,0,0)$ of S^{3} and T is invariant by τ, the

