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1. Introduction.

Let $\Pi$ denote a translation plane of order $q^{k}$ with kernel $GF(q)$ and let $\mathcal{G}$

be a collineation group of $\Pi$ in the translation complement. That is, $\mathcal{G}$ is a
subgroup of $\Gamma L(2k, q)$ . Normally, $\mathcal{G}$ is taken to belong to the linear translation
complement while simultaneous disclaimers are made as to the differences
between the situations linear and nonlinear.

If $\mathcal{G}$ is nonsolvable then there is a nonsolvable subgroup $in_{a}^{w}the$ linear
translation complement. This usually suffices for the study in question. How-
ever, when $\mathcal{G}$ is solvable, the fact that $\mathcal{G}$ may not be linear creates many
problems.

In several recent articles, translation planes of order $q^{2}$ with kernel $GF(q)$

which admit collineation groups of order $q^{2}$ have been studied. In order to
apply various analyses of functions on finite fields, the group $\mathcal{G}$ is required to
be in the linear translation complement.

For a general study, we must therefore consider the following:

LINEARITY QUESTION. If $\prod$ is a tranSlatiOn plane of Order $q^{s}=p^{sr}$ with
kernel $GF(q)$ admitting a group $\mathcal{G}$ of order $q^{s}$ in the translation complement, $is$

$\mathcal{G}$ a subgroup of the linear translation complement $P$

If $\Pi$ is a semifield plane of even order $q^{2}$ (for example Desarguesian) which
admits a Baer involution then there is a group $\mathcal{G}$ of order $q^{2}$ such that
$|\mathcal{G}\cap GL(\Pi)|=q^{2}/2$ or $q^{2}$ depending on the kernel.

Hence, in order to study the linearity question in dimension 2, we must
make an additional assumption.

In the odd order case, a linear group of order $q^{2}$ which acts on translation
plane of order $q^{2}$ and kernel $GF(q)$ turns out to be Abelian (see $e.g$ . $[3]$ ). So,
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