A note on the Kahn-Priddy map

Dedicated to Professor Hirosi Toda on his 60th birthday

By Juno MUKAI

(Received June 12, 1986)

§0. Introduction.

 L_p denotes the infinite dimensional lens space mod a prime p. L_p^k stands for its k-skeleton with the usual cellular decomposition $L_p = S^1 \cup e^2 \cup \cdots \cup e^{2n-1}$ $\cup e^{2n} \cup \cdots$. In particular L_2^k is the real projective space P^k . Let $\lambda_k : E^{2m+1}L_p^k$ $\rightarrow S^{2m+1}$ for $m \ge 1$ be a mapping. Then we adopt the following definition ([7], [11], [14]): λ_k for $2p-3 \le k \le 2(m+1)(p-1)-2$ is called a Kahn-Priddy map if the functional $\mathfrak{P}^1(Sq^2)$ -operation of λ_k is nontrivial (resp.). From the definition, the *t*-fold suspension $E^t\lambda_k$ for $t\ge 0$ is also a Kahn-Priddy map. By abuse of notation, a mapping $E^t\lambda_k$ is regarded as an element of the cohomotopy group $\pi^c(E^cL_p^k)$ for c=t+2m+1. λ'_k stands for the restriction $\lambda_k | E^{2m+1}L_p^{k-1}$. A stable map $E^\infty\lambda_k$ is often written $\lambda_k : L_p^k \to S^0$.

The main purpose of the present note is to determine the orders $\#(E^t\lambda_{2n})$ and $\#(E^t\lambda'_{2n})$ completely. The problem determining the order of the Kahn-Priddy map was first posed by Nishida who obtained $\#(E^{\infty}\lambda_{2n})=\#(E^{\infty}\lambda'_{2n})=$ $p^{[n/(p-1)]}$ for an odd prime p [15]. Here [x] denotes the integral part of x. In the case p=2, the author [12] obtained $\#(E^t\lambda_{2n})=2^{\phi(2n)}$. Here $\phi(n)$ is the number of integers in the interval [1, n] congruent to 0, 1, 2 or 4 mod8.

Nishida's method is to use the algebraic K-group of L_p^k . Our method is to follow that of [12] of which the classical KO-group of P^k [1] is used. In the case of an odd prime p, it suffices to use the K-group of L_p^k [8]. To determine the infimum of the order of a Kahn-Priddy map, we shall use the d- or e-invariant [2]. To determine the supremum, we shall use the suspension order of the stunted space L_p^{2n}/L_p^{2p-4} [4].

Let $\rho: L_p^{2n-1} \to L_p^{2n-1}/L_p^{2n-2} = S^{2n-1}$ be the canonical map. Let $\alpha_s \in \pi_{2s(p-1)-1}(S^0)$ for an odd prime p be Adams-Toda's element such that $\#\alpha_s = p$ and $e_c(\alpha_s) \equiv -1/p \mod 1$ [2]. Then we have the following

THEOREM 1. Let p be an odd prime, $m \ge 1$ and $p-1 \le n \le (m+1)(p-1)-1$.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 61540026), Ministry of Education, Science and Culture.