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1. Introduction.

The purpose of this paper is to present some results related to the Teichm\"uller

spaces. Let $\Gamma$ be a Fuchsian group acting on the upper half plane $U=\{{\rm Im} z>0\}$ .
Then the Teichm\"uller space $T(\Gamma)$ is represented as a bounded domain in the
Banach space $B(U^{*}, \Gamma)$ of bounded quadratic differentials for $\Gamma$ in the lower
half plane $U^{*}$ (Bers [1]). We consider the function $\varphi_{\alpha}(z)=\alpha z^{-2},$ $\alpha\in C$ , defined
in $U^{*}$ . Let $F_{a}$ be a solution of the differential equation $\{f, z\}=\varphi_{a}(z)$ , where
$\{f, z\}=(f’/f’)’-(1/2)(f’/f’)^{2}$ denotes the Schwarzian derivative of $f$. Then it
is known that $F_{\alpha}$ is univalent in $U^{*}$ if and only if $\alpha$ belongs to the set $V=$

$\{\alpha=(1-re^{2i\theta})/2;r\leqq 4\cos^{2}\theta, 0\leqq\theta<\pi\}([4,5])$ . Since it has such a simple form,
the function $\varphi_{a},$

$\alpha\in V$, cannot belong to $T(\Gamma)$ unless $\Gamma$ is one of some elementary
groups (see Section 4). However if we are allowed to vary $\Gamma$ in its quasicon-
formal equivalence class, we obtain the following result:

THEOREM A. Let $Q_{U}(\Gamma)$ be the set of all quasiconformal automorphisms of
$U$ compatjble with $\Gamma$ . If $\Gamma$ contains a hyPerbolic element, then for each $\alpha\in V$

there exzsts a sequence $w_{n},$ $n=1,2,$ $\cdots$ , in $Q_{U}(\Gamma)$ wzth an element $\varphi_{n}\in T(w_{n}\circ\Gamma$

$\circ w_{\overline{n}}^{1})$ such that $\varphi_{n}$ converges normally (uniformly on every compact subsets of $U^{*}$ )

to $\varphi_{\alpha}$ in $U^{*}$ .

The motivation of this theorem originates from a problem related to the
outradii of Teichm\"uller spaces. By a theorem of Nehari [8] the outradius $o(\Gamma)$

of $T(\Gamma)$ does not exceed 6. The following theorem shows that this value 6 is
sharp within the range of the quasiconformal equivalence class.

THEOREM B. Set $\mathcal{O}(\Gamma)=\sup\{o(w\circ\Gamma\circ w^{-1}); w\in Q_{U}(\Gamma)\}$ . Then the equality
$O(\Gamma)=6$ holds if $0<\dim T(\Gamma)$ .

Actually if $\Gamma$ is of the second kind, Theorem $B$ is trivially deduced from
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