A theorem on the outradii of Teichmüller spaces Dedicated to Professor Tadashi Kuroda on his sixtieth birthday By Toshihiro NAKANISHI (Received June 2, 1986) ## 1. Introduction. The purpose of this paper is to present some results related to the Teichmüller spaces. Let Γ be a Fuchsian group acting on the upper half plane $U=\{\operatorname{Im} z>0\}$. Then the Teichmüller space $T(\Gamma)$ is represented as a bounded domain in the Banach space $B(U^*, \Gamma)$ of bounded quadratic differentials for Γ in the lower half plane U^* (Bers [1]). We consider the function $\varphi_{\alpha}(z)=\alpha z^{-2}$, $\alpha\in C$, defined in U^* . Let F_{α} be a solution of the differential equation $\{f,z\}=\varphi_{\alpha}(z)$, where $\{f,z\}=(f''/f')'-(1/2)(f''/f')^2$ denotes the Schwarzian derivative of f. Then it is known that F_{α} is univalent in U^* if and only if α belongs to the set $V=\{\alpha=(1-re^{2i\theta})/2\,;\,r\leq 4\cos^2\theta,\,0\leq \theta<\pi\}$ ([4, 5]). Since it has such a simple form, the function $\varphi_{\alpha},\,\alpha\in V$, cannot belong to $T(\Gamma)$ unless Γ is one of some elementary groups (see Section 4). However if we are allowed to vary Γ in its quasiconformal equivalence class, we obtain the following result: THEOREM A. Let $Q_U(\Gamma)$ be the set of all quasiconformal automorphisms of U compatible with Γ . If Γ contains a hyperbolic element, then for each $\alpha \in V$ there exists a sequence w_n , $n=1, 2, \cdots$, in $Q_U(\Gamma)$ with an element $\varphi_n \in T(w_n \circ \Gamma \circ w_n^{-1})$ such that φ_n converges normally (uniformly on every compact subsets of U^*) to φ_α in U^* . The motivation of this theorem originates from a problem related to the outradii of Teichmüller spaces. By a theorem of Nehari [8] the outradius $o(\Gamma)$ of $T(\Gamma)$ does not exceed 6. The following theorem shows that this value 6 is sharp within the range of the quasiconformal equivalence class. THEOREM B. Set $\mathcal{O}(\Gamma) = \sup\{\mathbf{o}(w \circ \Gamma \circ w^{-1}); w \in Q_U(\Gamma)\}$. Then the equality $\mathcal{O}(\Gamma) = 6$ holds if $0 < \dim \mathbf{T}(\Gamma)$. Actually if Γ is of the second kind, Theorem B is trivially deduced from This research was partially supported by Grant-in-Aid for Scientific Research (No. 60740108), Ministry of Education, Science and Culture.