Existence of a non-inductive linear form on certain solvable Lie algebras

By Takaaki NOMURA

(Received April 23, 1986)

Introduction.

Let g be a solvable Lie algebra and g^* its dual vector space. Given $f \in g^*$, we set

$$\mathfrak{g}(f) = \{x \in \mathfrak{g}; f([x, y]) = 0 \text{ for all } y \in \mathfrak{g}\}.$$

Then, $\mathfrak{g}(f)$ acts naturally on $\mathfrak{g}/\mathfrak{g}(f)$. We say that f is *inductive* if for every $x \in \mathfrak{g}(f)$, the operator $\mathrm{ad}_{\mathfrak{g}/\mathfrak{g}(f)}x$ is nilpotent. So, if f is inductive, the linear Lie algebra $\mathrm{ad}_{\mathfrak{g}/\mathfrak{g}(f)}\mathfrak{g}(f)$ is nilpotent by Engel's theorem. We refer the reader to the papers Poguntke [6, Lemma 2] and Tauvel [10, Lemme 3.1] for various equivalent conditions for the inductivity of linear forms (we note that although the base field k is assumed to be algebraically closed throughout [10], the proof of Lemme 3.1 in that paper still works for $k=\mathbf{R}$).

Now let g be exponential and $G = \exp g$ the corresponding connected and simply connected Lie group. Denote by \hat{G} the equivalence classes of irreducible unitary representations of G with the Fell topology. We equip the finite dimensional vector space g^* with the natural topology and the coadjoint orbit space g^*/G with the quotient topology. Then, one knows that the Kirillov-Bernat mapping $\rho: g^*/G \rightarrow \hat{G}$ is a continuous bijection and it is a long-standing conjecture that ρ is a homeomorphism. Among several works toward this conjecture (cf. Fujiwara [2] and its Introduction), Boidol [1] made inductive linear forms play a significant role as follows.

THEOREM (Boidol). Let $G = \exp \mathfrak{g}$ be an exponential Lie group. If every linear form on \mathfrak{g} is inductive, ρ is a homeomorphism.

Thus there arises a natural question: to what extent does the above Boidol's theorem cover the exponential Lie groups? This motivated the present work and the purpose of this note is to provide a class of completely solvable (hence exponential) Lie algebras \mathfrak{s} on which there is always a non-inductive linear form. So, the Boidol's theorem is not applicable for the solvable Lie groups $S = \exp \mathfrak{s}$. Furthermore, by a theorem of Poguntke [6, Theorem 10] (for our S, Theorem 3 in [5] suffices), the involutory Banach algebra $L^1(S)$ is not sym-