J. Math. Soc. Japan Vol. 39, No. 4, 1987

Note on H^p on Riemann surfaces

By Mitsuru NAKAI and Toshimasa TADA

(Received April 21, 1986)

The purpose of this note is to prove a theorem which implies the following: Given an arbitrary open Riemann surface R and an arbitrary positive real number p. There exist a holomorphic function f on R and two subregions S and T of R with $S \cup T = R$ such that f | S(f | T, resp.) belongs to $H^p(S)(H^p(T), \text{ resp.})$ and yet f does not belong to $H^p(R)$.

1. We denote by $H^{p}(R)$ for a positive real number p the class of holomorphic functions f on an open Riemann surface R such that $|f|^{p}$ has a harmonic majorant on R. In this note we prove the following

THEOREM. For an arbitrary holomorphic function f on an arbitrary open Riemann surface R and any positive real number p, there exist two subregions S_f and T_f of R with $S_f \cup T_f = R$ such that $f | S_f(f | T_f, resp.)$ belongs to $H^p(S_f)$ $(H^p(T_f), resp.)$.

This result was originally obtained by Bañuelos and Wolff [1] when R is the unit disk. The proof will be given in nos. 2-7.

Proof of the Theorem.

2. First we fix our basic notation. We take an exhaustion $\{R_n\}_1^\infty$ of R (cf. e.g. [2]) and denote by $\{U_{nj}\}_{j=1}^{\nu_n}$ $(n=1, 2, \cdots)$ the connected components of $U_n = R_{2n-1} - \bar{R}_{2n-2}$, where we set $R_0 = \emptyset$. We connect U_{nj} $(j=1, \cdots, \nu_n; n=2, 3, \cdots)$ with R_{2n-3} by a strip $V_{nj} = \psi_{nj}(D_{nj})$ in $R_{2n-2} - \bar{R}_{2n-3}$, i.e. an image of a rectangle

$$D_{nj} = \{x + yi : 0 < x < 1, 0 < y < y_{nj}\}$$

by a conformal mapping ψ_{nj} of a neighborhood of \overline{D}_{nj} to R. We may assume that

$$\begin{split} \psi_{nj}([0, y_{nj}i]) &= \partial V_{nj} \cap \partial R_{2n-3}, \\ \psi_{nj}([1, 1+y_{nj}i]) &= \partial V_{nj} \cap \partial U_{nj}, \end{split}$$

This research was partially supported by Grants-in-Aid for Scientific Research (Nos. 61540094 and 60302004), Ministry of Education, Science and Culture.