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Initroduction.

Let $M$ be a finite von Neumann algebra with a faithful normal normalized
trace $\tau$ and $N$ be a von Neumann subalgebra of $M$. Then, the relative entropy
$H(M|N)$ is naturally defined as an extended notion of the conditional entropy
in commutative cases. This relative entropy is used in Connes-Stormer’s work
[4] as a technical tool for finite dimensional algebras $M$. Recently, $0$. Pimsner
and S. Popa have deeply studied it ([12]). One of their main results is to make
clear the relationship between $H(M|N)$ and Jones’ index $[M:N]$ for a type $II_{1}$

factor $M$ and its subfactor $N$ and give the formula on $H(M|N)$ for this pair.
Another one is to compute completely the value of $H(M|N)$ for an arbitrary
subalgebra $N$ of a finite dimensional algebra $M$.

The aim of this paper is to give the complete formula on $H(M|M^{G})$ for an
arbitrary action $\alpha$ of a finite group $G$ on a finite von Neumann algebra $M$ by
the following method, where $M^{G}$ is the fixed point subalgebra of $M$ under the
action $a$ .

[A] A general case may be reduced to the case that the action $\alpha$ is centrally
ergodic, see $Propo\alpha tim2.1$ .

[B] The case where $a$ is centrally ergodic may be reduced to the case that
$M$ is a factor, see Proposition2.2.

$[C]$ When $M$ is a factor, $H(M|M^{a})$ may be computed in association with the
conjugacy invariants of actions introduced and deePly studied by V. Jones [6], see
Theorem 2.6.

APplying these formulas, we can show the fact that $H(M|M^{\alpha})\leqq\log|G|$ holds in
general and we can characterize such actions $\alpha$ that $H(M|M^{\alpha})$ attains logl $G|$ ,
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