Singular hyperbolic systems, VI. Asymptotic analysis for Fuchsian hyperbolic equations in Gevrey classes

By Hidetoshi Tahara

(Received March 22, 1986)

In the previous papers [11, 12, 13], the author has investigated Fuchsian hyperbolic equations in C^{∞} function spaces. But, here, Fuchsian hyperbolic equations are studied in Gevrey function spaces.

The motivation is as follows. Let

$$
P=\left(t \partial_{t}\right)^{2}-t^{2 \kappa_{1}} \partial_{x_{1}}^{2}-t^{2 \kappa_{2}} \partial_{x_{2}}^{2}+t^{l_{1}} a_{1}(t, x) \partial_{x_{1}}+t^{l_{2}} a_{2}(t, x) \partial_{x_{2}}+b(t, x)\left(t \partial_{t}\right)+c(t, x),
$$

where $(t, x)=\left(t, x_{1}, x_{2}\right) \in[0, T] \times \boldsymbol{R}^{2}, 2 \kappa_{1}, 2 \kappa_{2}, l_{1}, l_{2} \in N(=\{1,2,3, \cdots\}), a_{1}(t, x)$, $a_{2}(t, x), b(t, x), c(t, x) \in C^{\infty}\left([0, T] \times \boldsymbol{R}^{2}\right), a_{1}(0, x) \not \equiv 0$ and $a_{2}(0, x) \not \equiv 0$. Let $\rho_{1}(x)$, $\rho_{2}(x)$ be the roots of $\rho^{2}+b(0, x) \rho+c(0, x)=0$ and assume that $\rho_{1}(x), \rho_{2}(x) \notin \boldsymbol{Z}_{+}$ ($=\{0,1,2, \cdots\}$) for any $x \in \boldsymbol{R}^{2}$. Then, by Tahara [11] and Mandai [7] we can see the following: $P u=f$ is well-posed in $C^{\infty}\left([0, T] \times \boldsymbol{R}^{2}\right)$, if and only if " $l_{1} \geqq \kappa_{1}$ and $l_{2} \geqq \kappa_{2}$ " holds. Hence, if we want to treat P without " $l_{1} \geqq \kappa_{1}$ and $l_{2} \geqq \kappa_{2}$ ", we must restrict ourselves to the study in suitable subclasses of $C^{\infty}\left([0, T] \times \boldsymbol{R}^{2}\right)$. For this purpose, Gevrey classes seem to be very fitting. This is the reason why the author has come to treat the equation in Gevrey classes.

§ 1. Main Theorem.

First, we state our Main Theorem and its background.
Let $(t, x) \in[0, T] \times \boldsymbol{R}^{n}(T>0)$, and let us consider

$$
\begin{equation*}
P\left(t, x, t \partial_{t}, \partial_{x}\right)=\left(t \partial_{t}\right)^{m}+\sum_{\substack{j+1 \alpha 1 \leq m \\ j<m}} t^{l(j, \alpha)} a_{j, \alpha}(t, x)\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha}, \tag{1.1}
\end{equation*}
$$

where $x=\left(x_{1}, \cdots, x_{n}\right), \quad \partial_{t}=\partial / \partial t, \quad \partial_{x}=\left(\partial / \partial x_{1}, \cdots, \partial / \partial x_{n}\right), \quad m \in N(=\{1,2,3, \cdots\})$, $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \boldsymbol{Z}_{+}^{n}\left(=\{0,1,2, \cdots\}^{n}\right),|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and $\partial_{x}^{\alpha}=\left(\partial / \partial x_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\alpha_{n}}$. Assume the following conditions:
$\left(A_{k}\right) \quad l(j, \alpha) \in \boldsymbol{R}(j+|\alpha| \leqq m$ and $j<m)$ satisfy

[^0]
[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 60740098), Ministry of Education, Science and Culture.

