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Introduction.

Minimal surfaces with constant curvature in real space forms have been
classified completely (cf. [5], [9], [2]). A next interesting problem is to classify
minimal surfaces with constant curvature in complex space forms. The pur-
pose of this peper is to classify minimal 2-spheres with constant curvature in
complex projective spaces.

Now let S%*c) be a 2-dimensional sphere with constant curvature ¢ and P,(C)
an n-dimensional complex projective space with the Fubini-Study metric of con-
stant holomorphic sectional curvature 1. There are two typical classes of min-
imal isometric immersions of S%¢) into P,{C).

One is a class of holomorphic isometric imbeddings of P,(C) into P,(C)
given by Calabi [4];

G 1 P(C) = S¥(1/n) ———> P,(C)
(20, 21) — > (VW n /U (n—) Nzbe? Vimo,n »

where (z,, z;) is the homogeneous coordinate system of P,(C). ¢, is called the
n-th Veronese imbedding of P,(C).

The other is a class of totally real minimal isometric immersions obtained
by composing a Boruvka sphere S2%(1/2k(k+1))—S2*(1/4) (cf. [1]), a natural
covering S?¥(1/4)—P,,(R) and a totally real totally geodesic imbedding P,,(R)
— P (C);

tr 2 SAL/2k(R+1)) —> Ppu(C).

In this paper we give a family of minimal isometric immersions of 2-spheres
with constant curvature into P,(C) which are not always holomorphic or totally
real, using the theory of unitary representations of SU(2). For n=3, we get
examples of minimal 2-spheres with constant curvature in P,(C) which are
neither holomorphic nor totally real. We will get the following :

THEOREM 1. For any nonnegative integers n and k with 0=<k=n, there exists
an SUQR)-equivariant minimal isometric immersion



