Minimal 2-spheres with constant curvature in $P_n(C)$

By Shigetoshi BANDO and Yoshihiro OHNITA

(Received Dec. 16, 1985)

Introduction.

Minimal surfaces with constant curvature in real space forms have been classified completely (cf. [5], [9], [2]). A next interesting problem is to classify minimal surfaces with constant curvature in complex space forms. The purpose of this peper is to classify minimal 2-spheres with constant curvature in complex projective spaces.

Now let $S^2(c)$ be a 2-dimensional sphere with constant curvature c and $P_n(C)$ an n-dimensional complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 1. There are two typical classes of minimal isometric immersions of $S^2(c)$ into $P_n(C)$.

One is a class of holomorphic isometric imbeddings of $P_1(C)$ into $P_n(C)$ given by Calabi [4];

$$\begin{split} \psi_n : P_1(C) &= S^2(1/n) \longrightarrow P_n(C) \\ (z_0, z_1) &\longrightarrow (\sqrt{n!/(l!(n-l)!)} z_0^l z_1^{n-l})_{l=0, \cdots, n} \,, \end{split}$$

where (z_0, z_1) is the homogeneous coordinate system of $P_1(C)$. ψ_n is called the *n*-th Veronese imbedding of $P_1(C)$.

The other is a class of totally real minimal isometric immersions obtained by composing a Borůvka sphere $S^2(1/2k(k+1)) \rightarrow S^{2k}(1/4)$ (cf. [1]), a natural covering $S^{2k}(1/4) \rightarrow P_{2k}(\mathbf{R})$ and a totally real totally geodesic imbedding $P_{2k}(\mathbf{R}) \rightarrow P_{2k}(\mathbf{C})$;

$$\mu_k: S^2(1/2k(k+1)) \longrightarrow P_{2k}(C)$$
.

In this paper we give a family of minimal isometric immersions of 2-spheres with constant curvature into $P_n(C)$ which are not always holomorphic or totally real, using the theory of unitary representations of SU(2). For $n \ge 3$, we get examples of minimal 2-spheres with constant curvature in $P_n(C)$ which are neither holomorphic nor totally real. We will get the following:

THEOREM 1. For any nonnegative integers n and k with $0 \le k \le n$, there exists an SU(2)-equivariant minimal isometric immersion