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§0. Introduction.

In this paper, we investigate a calculus of Fourier integral operators with
phase functions and symbols belonging to certain classes of weighted functions.
As an application we give another proof of the micro-local resolvent estimates
established in [3] and [4].

The phase function ¢(x, §) we consider satisfies
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for some integer (=0 and 0=<r<1. Namely ¢(x, £ is in a “neighborhood” of
xé=27,x,;£; in this sense. The symbol p(x, §) satisfies
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for some /, meR" and an integer £=0. The essential feature of ¢(x, § and
p(x, &) is that the decay order in x increases as the order of their derivatives
with respect to x increases, which makes the asymptotic expansion of symbols
with respect to x and the calculus possible. Our calculus is a version of that
of families of Fourier integral operators involving the parameter 0<h<1,
which has been discussed in Kitada-Kumano-go [6]. Schematically, we can
write “<{x>"'=h"”. However, the details have to be studied separately.

Our main result of the calculus is the following. Let ¢(x, §) satisfy (0.1)
and (0.2) for some 7 small enough and some / large enough, and let a(x, &)
satisfy (0.3) with /=m=0 and be close enough to 1 with respect to the semi-
norms defined through (0.3) with /=m=0. Then the Fourier integral operator
defined by '



