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Introduction.

It has been well recognized that the most appropriate notion of positivity
for linear maps between $c*$-algebras is the complete positivity. Although there
were classical works [8, 11, 12] on numerical completely positive functions, it
was not until the recent papers of Ando and Choi [1] and Arveson [3] that
the nonlinear complete positivity was investigated in the $C^{*}$-algebraic framework.
According to [1], in spite of the extent of nonlinearity, any completely positive
map between arbitrary $C^{*}$-algebras admits a nice representation as a doubly
infinite sum of compressions of completely positive linear maps on certain
$C^{*}$-tensor products. On the other hand, the essentially similar representation
was obtained in [3] for bounded completely positive complex-valued functions
on the open unit ball of a unital $C^{*}$-algebra.

Since Arveson’s Hahn-Banach type extension theorem [2] for completely
positive linear maps, the linear completely positive extension has been discussed
especially in connection with injectivity and nuclearity of $C^{*}$-algebras (see $e$ . $g$.
$[5, 7])$ . It seems natural to consider the nonlinear counterpart of complete
positive extension. The purpose of this paPer is to investigate the problem
when completely positive maps defined on $\mathcal{A}$ (resp. $ball\mathcal{A}$ , the open unit ball
of $\mathcal{A}$ ) can be extended on $\mathcal{B}$ (resp. ball $\mathcal{B}$ ) given a $C^{*}$-subalgebra $\mathcal{A}$ of a
$C^{*}$-algebra $\mathcal{B}$ .

In Section 1 of this Paper, on the lines of [1] we generalize the represen-
tation theorem in [3] to bounded completely positive maps on $ball\mathcal{A}$ with values
in a von Neumann algebra. In Section 2, we show the local uniform continuity
of completely positive maps. In Section 3, we give some completely positive
extension theorems in special cases when $\mathcal{B}=\mathcal{A}_{I}$ or $\mathcal{A}$ is seminuclear. We
further characterize pairs $\mathcal{A}\subset \mathcal{B}$ of $C^{*}$-algebras having the completely positive
extension property. It is proved above all that every completely positive map
from $\mathcal{A}$ to $B(\mathcal{H})$ is extended on $\mathcal{B}$ if and only if $\mathcal{A}^{\otimes m}\otimes\overline{\mathcal{A}}^{\otimes n}\subset \mathcal{B}^{\otimes m}\otimes\overline{\mathcal{B}}^{\otimes n}$ for
all $m,$ $n\geqq 0$ , where Js the $c*$-algebra conjugate to $\mathcal{A}$ and $\mathcal{A}^{\otimes m}\otimes\overline{\mathcal{A}}^{\otimes n}$ is the
projective $C^{*}$-tensor product of $m$ copies of $\mathcal{A}$ and $n$ copies of $\overline{\mathcal{A}}$ . Finally in
Section 4, we show that any completely positive map from $\mathcal{A}$ to a von Neumann


