√Morita theory

— Formal ring laws and monoidal equivalences of categories of bimodules —

To the memory of Professor Akira Hattori

By Mitsuhiro TAKEUCHI

(Received Oct. 16, 1985)

Introduction.

By an equivalence data between two categories \mathcal{A} , \mathcal{B} we mean a 4-tuple $(\Gamma, \Delta, \gamma, \delta)$, where $\Gamma: \mathcal{A} \rightarrow \mathcal{B}$ and $\Delta: \mathcal{B} \rightarrow \mathcal{A}$ are functors and $\gamma: \Gamma \Delta \simeq I$, $\delta: \Delta \Gamma \simeq I$ are isomorphisms of functors such that

$$\Delta \gamma = \delta \Delta$$
, $\gamma \Gamma = \Gamma \delta$.

The Morita theory deals with equivalence data between left module categories $_R\mathcal{M}$, $_S\mathcal{M}$ for rings R, S. It is known that every equivalence data up to isomorphism is described in terms of some *Morita equivalence data* $(_SP_R, _RQ_S, \alpha, \beta)$ with bimodule isomorphisms

$$\alpha: P \otimes_R Q \simeq S$$
, $\beta: Q \otimes_S P \simeq R$

as follows: Γ takes $M \in_R \mathcal{M}$ to $P \otimes_R M \in_S \mathcal{M}$ and Δ takes $N \in_S \mathcal{M}$ to $Q \otimes_S N \in_R \mathcal{M}$. The isomorphisms γ , δ come from α , β respectively.

When \mathcal{A} , \mathcal{B} are monoidal categories, the 4-tuple $(\Gamma, \Delta, \gamma, \delta)$ is called a monoidal equivalence data if in addition Γ , Δ are monoidal functors and γ , δ are isomorphisms of monoidal functors. A basic example of a monoidal category is provided by ${}_R\mathcal{M}_R$ the category of all R-bimodules. For R-bimodules M, N, the tensor product $M \otimes_R N$ (of M_R with ${}_R N$) has an R-bimodule structure (coming from ${}_R M$ and N_R). Together with unit R, this tensor product makes ${}_R\mathcal{M}_R$ into a monoidal category.

A natural question arises: What happens if we consider monoidal equivalence data between bimodule monoidal categories $_R\mathcal{M}_R$ and $_S\mathcal{M}_S$?

We begin with two simple examples of monoidal equivalence data. Let $({}_{S}P_{R}, {}_{R}Q_{S}, \alpha, \beta)$ be a Morita equivalence data as before. There is an associated

This research was partially supported by Grant-in-Aid for Scientific Research (No. 60540009), Ministry of Education, Science and Culture.