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Introduction.

By an equivalence data between two categories $\mathcal{A},$
$\mathcal{B}$ we mean a 4-tuple

$(\Gamma, \Delta, \gamma, \delta)$ , where $\Gamma;\mathcal{A}arrow \mathcal{B}$ and $\Delta;\mathcal{B}arrow \mathcal{A}$ are functors and $\gamma$ : $\Gamma\Delta\simeq I,$ $\delta:\Delta\Gamma\simeq I$

are isomorphisms of functors such that

$\Delta\gamma=\delta\Delta$ , $\gamma\Gamma=\Gamma\delta$ .

The Morita theory deals with equivalence data between left module cate-
gories $R\mathcal{M},$ $s\mathcal{M}$ for rings $R,$ $S$ . It is known that every equivalence data up to
isomorphism is described in terms of some Morita equivalence data $(s^{P_{R}}, RQ_{s}, \alpha, \beta)$

with bimodule isomorphisms

$\alpha$ : $P\otimes_{R}Q\simeq S$ , $\beta$ : $Q\otimes_{S}P\simeq R$

as follows: $\Gamma$ takes $M\in R\mathcal{M}$ to $P\otimes_{R}M\in s\mathcal{M}$ and $\Delta$ takes $N\in s^{\mathcal{M}}$ to $Q\otimes_{S}N\in R\mathcal{M}$ .
The isomorphisms $\gamma,$

$\delta$ come from $\alpha,$ $\beta$ respectively.
When $\mathcal{A},$ $\mathcal{B}$ are monoidal categories, the 4-tuple $(\Gamma, \Delta, \gamma, \delta)$ is called a

monoidal equivalence data if in addition $\Gamma,$
$\Delta$ are monoidal functors and $\gamma,$

$\delta$ are
isomorphisms of monoidal functors. A basic example of a monoidal category is
provided by $R\mathcal{M}_{R}$ the category of all R-bimodules. For R-bimodules $M,$ $N$, the
tensor product $M\otimes_{R}N$ (of $M_{R}$ with $RN$) has an R-bimodule structure (coming
from $RM$ and $N_{R}$). Together with unit $R$ , this tensor product makes $R\mathcal{M}_{R}$ into
a monoidal category.

A natural question arises: What happens if we consider monoidal equivalence
data between bimodule monoidal categories $R\mathcal{M}_{R}$ and $s\mathcal{M}_{S}$ ?

We begin with two simple examples of monoidal equivalence data. Let
$(s^{P_{R}}, RQ_{s}, \alpha, \beta)$ be a Morita equivalence data as before. There is an associated
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