On topologies of triangulated infinite-dimensional manifolds

By Katsuro SAKAI

(Received Sept. 7, 1984) (Revised Oct. 7, 1985)

0. Introduction.

Consider \mathbb{R}^n as the subset $\mathbb{R}^n \times \{(0, 0, \cdots)\}$ of the countable infinite product \mathbf{R}^{ω} of the real line \mathbf{R} . The set $\bigcup_{n \in N} \mathbf{R}^n$ admits two different natural topologies. One is the weak topology with respect to the tower $\{R^n\}_{n\in\mathbb{N}}$ and the space with this topology is called the *direct limit* of lines and denoted by dir lim R^n or simply by \mathbf{R}^{∞} . Another is the relative topology inherited from the product topology of R^{ω} and the space with this topology is denoted by σ , that is, σ is a subspace of the linear topological space s ($= R^{\omega}$) of all real sequences. (It is well-known that the pair (s, σ) is homeomorphic (\approx) to the pair (l_2, l_2^f) , where l_2^f is the linear span of the canonical orthonormal basis of Hilbert space l_2 .) A separable topological manifold modeled on these spaces is called an R^{∞} -manifold or a σ -manifold, respectively. These are considered as two different topologizations on the same underlying set. The former is the direct limit of a tower of finite-dimensional (f.d.) compact metrizable spaces (compacta), that is, its topology is the weak topology with respect to the tower ([8, Prop. III. 2]). The latter is metrizable and coarser than the former. Both of these manifolds are triangulated, that is, each R^{∞} -manifold is homeomorphic to a simplicial complex with the weak (Whitehead) topology (cf. [18, Introduction]) and each σ -manifold is homeomorphic to a simplicial complex with the metric topology ([11, Theorem 15]). Let K be a simplicial complex and $|K| = \bigcup K$ the realization of K. By $|K|_{w}$ and $|K|_{m}$, we denote the spaces |K| with the weak topology and the metric topology, respectively. We conjecture that $|K|_w$ is an R^{∞} -manifold if and only if $|K|_m$ is a σ -manifold. In this paper, we prove a half of this conjecture, that is,

THEOREM. For a simplicial complex K, $|K|_m$ is a σ -manifold if $|K|_w$ is an \mathbb{R}^{∞} -manifold.

A map $f: X \to Y$ is a fine homotopy equivalence provided for each open cover \mathcal{U} of Y there exists a map $g: Y \to X$ such that fg is \mathcal{U} -homotopic to id_Y and