Rational points on the modular curves $X_{0}^{+}(N)$

By Fumiyuki Momose

(Received Jan. 5, 1984)
(Revised Sept. 18, 1985)

Let $N \geqq 1$ be an integer and $X_{0}(N)$ be the modular curve defined over \boldsymbol{Q} which corresponds to the modular group $\Gamma_{0}(N)$. The modular curve $X_{0}(N)$ is the coarse moduli space / Q of the isomorphism classes of the generalized elliptic curves E with a cyclic subgroup A of order $N[3]$. The fundamental involution w_{N} of $X_{0}(N)$ is defined by

$$
(E, A) \longmapsto\left(E / A, E_{N} / A\right),
$$

where $E_{N}=\operatorname{ker}(N: E \rightarrow E)$. Let $X_{0}^{+}(N)$ be the quotient $X_{0}(N) /\left\langle w_{N}\right\rangle$. The rational points on $X_{0}(N)$ are determined for all integers $N \geqq 1[10][5,6,7,8][12]$. We here discuss the rational points on $X_{0}^{+}(N)$. The author $[13,14]$ discussed the case when N are powers of a prime number. The similar method as in $[13,14]$ can be applied to the case for composite numbers N. There are \boldsymbol{Q}-rational points on $X_{0}^{+}(N)$ which are represented by elliptic curves with complex multiplication. We call these points C.M. points. Let $n(N)$ denote the number of the \boldsymbol{Q}-rational points on $X_{0}^{+}(N)$ which are neither cusps nor C.M. points. Then our result is as follows.

Theorem (0.1). Let N be a composite number. If N has a prime divisor p which satisfies the following conditions (i) and (ii), then $n(N)=0$:
(i) $p \geqq 17$ or $p=11$.
(ii) $p \neq 37$ and $\# J_{0}^{-}(p)(\boldsymbol{Q})<\infty$.

Here $J_{0}^{-}(p)$ is the quotient $J_{0}(p) /\left(1+w_{p}\right) J_{0}(p)$ of the jacobian variety $J_{0}(p)$ of $X_{0}(p)$ and w_{p} is the automorphism of $J_{0}(p)$ induced by the fundamental involution w_{p} of $X_{0}(p)$.

For the prime numbers $p, 17 \leqq p<300$, the condition (ii) above is satisfied, except for $p=37,151,199,227$ and 277 [9] [22] table $5 \mathrm{pp} .135-141$. We here describe a sketch of the proof of theorem (0.1). Let $f=f_{N, p}$ be the morphism of $X_{0}(N)$ to $J_{0}(p)$ defined by

$$
f:(E, A) \longmapsto \operatorname{cl}\left(\left(E / A_{p}, E_{p} / A_{p}\right)-\left(E / A,\left(E_{p}+A\right) / A\right)\right),
$$

where A_{p} is the subgroup of A of order p. Then f defines a morphism

