Rational points on the modular curves $X_0^+(N)$

By Fumiyuki MOMOSE

(Received Jan. 5, 1984) (Revised Sept. 18, 1985)

Let $N \ge 1$ be an integer and $X_0(N)$ be the modular curve defined over Q which corresponds to the modular group $\Gamma_0(N)$. The modular curve $X_0(N)$ is the coarse moduli space /Q of the isomorphism classes of the generalized elliptic curves E with a cyclic subgroup A of order N [3]. The fundamental involution w_N of $X_0(N)$ is defined by

$$(E, A) \longmapsto (E/A, E_N/A),$$

where $E_N = \ker(N: E \to E)$. Let $X_0^+(N)$ be the quotient $X_0(N)/\langle w_N \rangle$. The rational points on $X_0(N)$ are determined for all integers $N \ge 1$ [10] [5, 6, 7, 8] [12]. We here discuss the rational points on $X_0^+(N)$. The author [13, 14] discussed the case when N are powers of a prime number. The similar method as in [13, 14] can be applied to the case for composite numbers N. There are Q-rational points on $X_0^+(N)$ which are represented by elliptic curves with complex multiplication. We call these points C. M. points. Let n(N) denote the number of the Q-rational points on $X_0^+(N)$ which are neither cusps nor C.M. points. Then our result is as follows.

THEOREM (0.1). Let N be a composite number. If N has a prime divisor p which satisfies the following conditions (i) and (ii), then n(N)=0:

(i) $p \ge 17 \text{ or } p = 11$.

(ii) $p \neq 37$ and $\# J_0(p)(Q) < \infty$.

Here $J_0(p)$ is the quotient $J_0(p)/(1+w_p)J_0(p)$ of the jacobian variety $J_0(p)$ of $X_0(p)$ and w_p is the automorphism of $J_0(p)$ induced by the fundamental involution w_p of $X_0(p)$.

For the prime numbers p, $17 \le p < 300$, the condition (ii) above is satisfied, except for p=37, 151, 199, 227 and 277 [9] [22] table 5 pp. 135-141. We here describe a sketch of the proof of theorem (0.1). Let $f=f_{N,p}$ be the morphism of $X_0(N)$ to $J_0(p)$ defined by

$$f: (E, A) \longmapsto \operatorname{cl}((E/A_p, E_p/A_p) - (E/A, (E_p+A)/A)),$$

where A_p is the subgroup of A of order p. Then f defines a morphism