A stochastic solution of a high order parabolic equation

By Kunio NISHIOKA

(Received Sept. 18, 1984) (Revised Aug. 28, 1985)

§0. Introduction.

Our purpose in this paper is to solve the following initial value problem by a stochastic method, using an extension of a Girsanov type formula as in [4].

- (0.1, i) $\frac{\partial W}{\partial t}(t, x) = (A+B)W(t, x), \quad t > 0, x \in \mathbb{R}^{d},$
- (0.1, ii) W(0, x) = f(x),

where

$$A = (-1)^{q-1} \rho \sum_{k=1}^{d} \left(\frac{\partial}{\partial x_k} \right)^{2q},$$

q is a natural number, and ρ is a complex number such that $\operatorname{Re} \rho > 0$, and

$$B = \sum_{|\alpha| \leq 2q} b_{\alpha}(x) \left(\frac{\partial}{\partial x}\right)^{\alpha},$$

f(x) and $b_{\alpha}(x)$ are complex valued functions in a certain class $\mathcal{F}^{0}(\mathbb{R}^{d})$ (see § 1), and $|\alpha| = \sum_{k=1}^{d} \alpha_{k}$ and $(\partial/\partial x)^{\alpha} = \prod_{k=1}^{d} (\partial/\partial x_{k})^{\alpha_{k}}$ for multi index $\alpha = (\alpha_{1}, \dots, \alpha_{d})$. For $b_{\alpha}(x)$, $|\alpha| = 2q$, we assume a sufficient condition, under which (0.1) is strongly parabolic.

As in [4], we consider A-process, which is a "Markov process" related to

(0.2)
$$\frac{\partial u}{\partial t}(t, x) = Au(t, x), \quad t > 0, x \in \mathbf{R}^{d},$$

i.e., the density of the "transition probability" of the process is the fundamental solution of (0.2). In general, this transition probability is not positive even for real ρ . Therefore, if a completely additive measure related to *A*-process should be realized on a path space, then the measure would not be of bounded variation, shown as in [1, 2, 4]. Thus, *A*-process is not a Markov process in the usual sense.

In [4], we defined "stochastic integrals" of A-process, and each stochastic integral corresponds to a differential operator of order up to 2q-1. Here we