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\S 0. Introduction.

Our purpose in this paper is to solve the following initial value problem by
a stochastic method, using an extension of a Girsanov type formula as in [4].

(0.1, i) $\frac{\partial W}{\partial t}(t, x)=(A+B)W(t, x)$ , $t>0,$ $x\in R^{d}$ ,

(0.1, ii) $W(O, x)=f(x)$ ,

where

$A=(-1)^{q- 1} \rho\sum_{k\approx 1}^{tl}(\frac{\partial}{\partial x_{k}})^{2q}$,

$q$ is a natural number, and $\rho$ is a complex number such that ${\rm Re}\rho>0$ , and

$B=$ $\sum_{1\alpha|\leqq 2q}b_{\alpha}(x)(\frac{\partial}{\partial x})^{\alpha}$ ,

$f(x)$ and $b_{\alpha}(x)$ are complex valued functions in a certain class $\mathcal{F}^{0}(R^{d})$ (see \S 1),

and $| \alpha|=\sum_{k\approx 1}^{d}\alpha_{k}$ and $(\partial/\partial x)^{a}=\Pi_{k=1}^{d}(\partial/\partial x_{k})^{\alpha_{k}}$ for multi index $\alpha=(\alpha_{1}, \cdots , \alpha_{d})$ .
For $b_{\alpha}(x)$ , $|\alpha|=2q$ , we assume a sufficient condition, under which (0.1) is
strongly parabolic.

As in [4], we consider A-process, which is a “ Markov process “ related to

(0.2) $\frac{\partial u}{\partial t}(i, x)=Au(t, x)$ , $t>0,$ $x\in R^{d}$ ,

$i$ . $e.$ , the density of the “ transition probability “ of the process is the funda-
mental solution of (0.2). In general, this transition probability is not positive
even for real $\rho$ . Therefore, if a completely additive measure related to
A-process should be realized on a path space, then the measure would not be
of bounded variation, shown as in [1, 2, 4]. Thus, A-process is not a Markov
process in the usual sense.

In [4], we defined “ stochastic integrals “ of A-process, and each stochastic
integral corresponds to a differential operator of order up to $2q-1$ . Here we


