Gauss-Manin connection of integral of difference products

Dedicated to Professor Nagayoshi Iwahori on his 60th birthday

By Kazuhiko AOMOTO

(Received Aug. 14, 1985)

0. Let x_1, \dots, x_p be real distinct numbers. As a function of x_1, \dots, x_p the integral

$$(0.1) F(x_1, \dots, x_p) = \int_{1 \le i < j \le N} (x_i - x_j)^{\lambda_{i,j}} dx_{p+1} \wedge \dots \wedge dx_N$$

for $2 \le p \le N$, over a suitable cycle satisfies an integrable analytic differential system (called Gauss-Manin connection in analytic geometry or holonomic system from micro-local point of view). In this note we want to give an explicit formula of it. In the sequel we denote by Φ the product $\prod_{1 \le i < j \le N} (x_i - x_j)^{\lambda_{i,j}}$.

Roughly speaking, our method is as follows. The structure of the integral (0.1) is of fibre type. This enables us to give a recurrent relation for integration over each variable x_{p+1}, \dots, x_N in the reverse order. Namely we first integrate (0.1) over x_N . Then we get the function of x_1, \dots, x_{N-1} satisfying a certain Gauss-Manin connection of classical Jordan-Pochhammer type. Next we do it over x_{N-1} and get a differential equation of similar nature and so on. Finally $F(x_1, \dots, x_p)$ satisfies a Gauss-Manin connection which can be computed in inductive way.

We assume from now on that $x_1 < x_2 < \cdots < x_p$ and that the point (x_{p+1}, \cdots, x_N) lies in \mathbb{R}^{N-p} . We denote by Δ the closure of any of relatively compact components of the open set: $x_{p+\nu} \neq x_j$, $1 \leq j \leq p$ and $x_{p+\mu} \neq x_{p+\nu}$ for $\mu \neq \nu$ in \mathbb{R}^{N-p} . If $\lambda_{i,j}$ are all positive, the integral over each domain Δ has a definite meaning. If some of $\lambda_{i,j}$ are negative we have to replace Δ by its regularized cycle Δ^{reg} (which is called "renormalized" by physicists and which is essentially the same as "finite part of divergent integrals" in the sense of J. Hadamard), such that $\int_{\Delta^{\text{reg}}}$ is an analytic continuation of the original \int_{Δ} considered as function of the variables $\lambda = (\lambda_{i,j})_{i < j}$ (For the way of construction, see [A2] or [T] pp. 314-318). The regularized cycle Δ^{reg} defines a twisted homological (N-p)-cycle in the affine algebraic variety $X = \mathbb{C}^{N-p} - \bigcup (x_i = x_j)$ where $1 \leq i \leq N$,