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\S 1. Introduction.

The inverse problem for quantum and acoustic scatterings has been investi-
gated extensively. Little attention, however, seems to have been paid to the
inverse problem for the acoustic scattering. P. Lax and R. Phillips [4, p. 174],

showed that the scattering operator associated with the wave equation in an
exterior domain $\Omega$ (with $\partial\Omega$ smooth and bounded) whose solutions satisfy the
boundary condition of being zero on $\partial\Omega$ uniquely determines the obstacle $\Omega^{c}$ .
But in the case of a metric perturbation for the wave equation in $R^{n}$ it is not
known whether the scattering operator uniquely determines the metric or not.
The purpose of this paper is to give an answer to an inverse problem related
to this problem.

Let $g(x)$ be a $C^{\infty}$-Riemannian metric on $R^{n}(n\geqq 2)$ satisfying $g(x)=I_{n}$ (the

unit matrix of degree n) for $|x|\geqq r_{0}$ where $r_{0}$ is a positive number. Consider
the scattering problem for the acoustic equation

(1.1) $(\partial_{t}^{2}-\nabla\cdot g(x)^{-1}\nabla)u(t, x)=0$ in $R^{1}\cross R^{n}$ ,

where $\nabla={}^{t}(\partial_{x_{1}}, \cdots , \partial_{x_{n}})$ . Let $S(s, \theta, \omega)$ be the scattering kernel for this prob-
lem. For each $\omega,$

$\theta\in S^{n-1}$ , it is well known that $S(\cdot, \theta, \omega)$ is a distribution on
$R^{1}$ (see H. Soga [2], [3]). In what follows we adopt the following convention:
sup sing supp $S(\cdot, \theta, \omega)=-\infty$ if sing supp $S(\cdot, \theta, \omega)=\emptyset$ . We consider the fol-
lowing

PROBLEM. Find an inhomogeneous media $g(x)$ from the known
sup sing supp $S(\cdot, \theta, \omega)$ .

Now let us prepare notations in order to give our answer to this problem.
Let $g_{e}^{n}(x)$ be a surface of revolution on $R^{n}$ with center $0$ treated by H. Gluck
and D. Singer [1] in the case that $n=2$ , namely

(1.2) $g_{e}^{n}(x)=I_{n}- \frac{e(|x|)}{|x|^{2}}x^{t}x$ , $x={}^{t}(x_{1}, \cdots x_{n})\in R^{n}\backslash 0$ ,


