A sharp sufficient geometric condition for the existence of global real analytic solutions on a bounded domain

By Akira KANEKO

(Received Nov. 21, 1984) (Revised July 26, 1985)

1. Let P(D) denote a linear partial differential operator with constant coefficients. Let $\Omega \subset \mathbb{R}^n$ be open and let $\mathcal{A}(\Omega)$ denote the space of real analytic functions on Ω . In this paper we give a result which refines the following one on the existence of global real analytic solutions abstracted from the work of Kawai [7]:

THEOREM 1. Let P(D) be locally hyperbolic and let K_{ξ} denote the local propagation cone of P(D) corresponding to the direction ξ , which we assume can be chosen depending in an upper semi-continuous way on $\xi \in S^{n-1}$. Assume that Ω is bounded and that $\partial \Omega \times S^{n-1}$ can be covered by two closed subsets X^{\pm} such that

(1) $(x, \xi) \in X^{\pm}$ implies either $P_m(\xi) \neq 0$ or $(\{x\} \pm K_{\xi}) \cap \Omega = \emptyset$

(with the double signs in the same order). Then we have $P(D)\mathcal{A}(\Omega) = \mathcal{A}(\Omega)$.

Our refined theorem is as follows:

THEOREM 2. Let P(D) be locally hyperbolic and $\Omega \subset \mathbb{R}^n$ a bounded open set. Assume that

(2) $(x, \xi) \in \partial \Omega \times S^{n-1}$ implies either $P_m(\xi) \neq 0$ or $(\{x\} + K_{\xi}) \cap \Omega = \emptyset$ for some choice of local propagation cone K_{ξ} at ξ (depending on x).

Then we have $P(D)\mathcal{A}(\Omega) = \mathcal{A}(\Omega)$.

Generically there are only two choices of local propagation cones at every ξ , namely $\pm K_{\xi}$. In that case the condition (2) is simply written as follows:

(2)' $(x, \xi) \in \partial \Omega \times S^{n-1}$ implies either of $P_m(\xi) \neq 0, \ (\{x\} + K_{\xi}) \cap \Omega = \emptyset, \ (\{x\} - K_{\xi}) \cap \Omega = \emptyset.$

Theorem 2 improves Theorem 1 in the following points: We do not need