Quasi-arithmetic means of continuous functions

By Takashi ITO and Chiê NARA*

(Received April 25, 1985)

Introduction.

Let I be an interval, containing more than one point, of real numbers. A quasi-arithmetic mean with weight of two numbers a, b in I is defined as

(1)
$$\phi^{-1}{t\phi(a)+(1-t)\phi(b)}$$

where ϕ is fixed as a strictly increasing or decreasing, real valued continuous function defined on I and the weight t is also fixed as a real number with 0 < t < 1. This mean will be denoted by $N_{\phi,t}(a, b)$ throughout the paper.

This definition of a mean can be extended naturally to a mean of a continuous function, instead of two numbers, as follows. Let X be a compact Hausdorff space and let C(X; I) be the space of all *I*-valued continuous functions on X. For a fixed strictly monotoneous continuous function ϕ on I as above and a fixed probability measure μ on X, a mean of a function f in C(X; I) is defined to be

(2)
$$\phi^{-1}\left\{\int_{X}\phi(f)d\mu\right\}.$$

In this paper this mean will be called a quasi-arithmetic mean with weight, simply a *QA*-mean and denoted by $M_{\phi,\mu}(f)$ for f in C(X; I).

It is clear that a QA-mean $M=M_{\phi,\mu}$ is a continuous functional defined on C(X; I) and has the following properties I), II) and (*), here we regard C(X; I) as the space with the topology of uniform convergence and the usual order structure.

I) $M(a 1_X) = a$ for all a in I,

where 1_X is the constant 1 function on X.

II) $M(f) \leq M(g)$ if $f \leq g$ in C(X; I).

By Fubini's theorem we have the following equation (*), which will be called the *bisymmetry equation*, this terminology is taken from [2],

^{*} The second author was partially supported by Grant-in-Aid for Scientific Research (No. 59740088), Ministry of Education, Science and Culture.