Real analytic actions of complex symplectic groups and other classical Lie groups on spheres

By Fuichi Uchida

(Received April 9, 1985)

0. Introduction.

There seems to be few works on non-compact semi-simple Lie groups acting on the sphere non-transitively. In the previous papers [7], [8] we have studied analytic $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{R})$ (resp. $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C})$) actions on the standard k-sphere and we have shown that such an action has been characterized by an analytic \boldsymbol{R}_{0} (resp. \boldsymbol{C}_{0}) action on a homotopy ($k-n+1$)-sphere (resp. ($k-2 n+2$)-sphere) satisfying a certain condition for $5 \leqq n \leqq k \leqq 2 n-2$ (resp. $n \geqq 7$ and $2 n \leqq k \leqq 4 n-2$). Here \boldsymbol{R}_{0} (resp. \boldsymbol{C}_{0}) denotes the multiplicative group of all non-zero real (resp. complex) numbers.

In this paper we study analytic $\boldsymbol{S p}(n, \boldsymbol{C})$ actions on integral homology k spheres and we shall show in Section 5 that such an action is characterized by an analytic C_{0} action on an integral homology ($k-4 n+2$)-sphere satisfying a certain condition for $n \geqq 7$ and $4 n \leqq k \leqq 8 n-2$. By an integral homology k-sphere we mean a closed orientable analytic manifold whose homology with integer coefficients is isomorphic to that of the standard k-sphere.

Our method and result are quite similar to that of the previous papers [7], [8]. One difference here is the need to show that the fixed point set of the restricted $L(n)$ action is an analytic submanifold of a given manifold with certain analytic $\boldsymbol{S} \boldsymbol{p}(n, \boldsymbol{C})$ action, where $L(n)$ is a non-compact closed subgroup of $\boldsymbol{S} \boldsymbol{p}(n, \boldsymbol{C})$ defined in Section 1. To show it, we need to study certain analytic $\boldsymbol{S L}(2, \boldsymbol{C})$ actions. Theorem 2.1 is a key result.

In the final part of Section 5 , we describe transitive $\boldsymbol{S p}(n, \boldsymbol{C})$ actions on $(4 n-1)$-sphere. Finally, we study analytic $\boldsymbol{S O}(n, \boldsymbol{C})$ actions on $(2 n-1)$-sphere and on the Brieskorn variety $W^{2 n-1}(d)$, and analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ actions on ($2 n-1$)sphere in Section 6.

1. Certain closed subgroups of $\operatorname{Sp}(n, C)$.

1.1. Let $\boldsymbol{G} \boldsymbol{L}(m, \boldsymbol{C})$ and $\boldsymbol{U}(m)$ denote the group of regular matrices of degree m with complex coefficients and the group of unitary matrices of degree m,

