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0. Introduction.

There seems to be few works on non-compact semi-simple Lie groups acting
on the sphere non-transitively. In the previous papers [7], [8] we have studied
analytic $SL(n, R)$ (resp. $SL(n,$ $C)$ ) actions on the standard k-sphere and we
have shown that such an action has been characterized by an analytic $R_{0}$ (resp.
$C_{0})$ action on a homotopy $(k-n+1)$ -sphere (resp. $(k-2n+2)$ -sphere) satisfying a
certain condition for $5\leqq n\leqq k\leqq 2n-2$ (resp. $n\geqq 7$ and $2n\leqq k\leqq 4n-2$). Here $R_{0}$

(resp. $C_{0}$) denotes the multiplicative group of all non-zero real (resp. complex)

numbers.
In this paper we study analytic $Sp(n, C)$ actions on integral homology k-

spheres and we shall show in Section 5 that such an action is characterized by
an analytic $C_{0}$ action on an integral homology $(k-4n+2)$ -sphere satisfying a
certain condition for $n\geqq 7$ and $4n\leqq k\leqq 8n-2$ . By an integral homology k-sphere
we mean a closed orientable analytic manifold whose homology with integer
coefficients is isomorphic to that of the standard k-sphere.

Our method and result are quite similar to that of the previous papers [7],

[8]. One difference here is the need to show that the fixed point set of the
restricted $L(n)$ action is an analytic submanifold of a given manifold with cer-
tain analytic $Sp(n, C)$ action, where $L(n)$ is a non-compact closed subgroup of
$Sp(n, C)$ defined in Section 1. To show it, we need to study certain analytic
$SL(2, C)$ actions. Theorem 2.1 is a key result.

In the final part of Section 5, we describe transitive $Sp(n, C)$ actions on
$(4n-1)$-sphere. Finally, we study analytic $SO(n, C)$ actions on $(2n-1)$ -sphere
and on the Brieskorn variety $W^{2n-1}(d)$ , and analytic $SL(n, R)$ actions on $(2n-1)-$

sphere in Section 6.

1. Certain closed subgroups of $Sp(n, C)$ .
1.1. Let $GL(m, C)$ and $U(m)$ denote the group of regular matrices of degree

$m$ with complex coefficients and the group of unitary matrices of degree $m$ ,


