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1. Introduction.

The aim of this paper is to develop a new method for establishing the
similarity for a pair of linear operators in an ordered Banach space $X$ over $C$.
Consider a pair of (in general unbounded) linear operators $B_{1}$ and $B_{2}=B_{1}+A$

with $A$ a bounded operator, and assume that both $-B_{1}$ and $-B_{2}$ generate the
bounded $C_{0}$-groups on $X$. Assume, in addition, that $e^{-tB_{1}}$ and $-A$ are positivity
preserving, and that $A$ is $(-iB_{1},1)$-smooth. Then we show that $B_{2}$ is similar
to $B_{1}$ (see Theorem 1 in section 2). The similarity of $B_{2}$ to $B_{1}$ is established
by constructing both the wave operator $W_{+}(B_{2}, B_{1})=s$-lim $tarrow+\infty^{e^{tB_{2}}e^{-tB_{1}}}$ and the
inverse wave operator $W_{+}(B_{1}, B_{2})=s$-lim $tarrow+\infty^{e^{tB_{1}}e^{-iB_{2}}}$ . To do this, we simply use
Cook’s method. Our technique depends heavily upon both $e^{-tB_{1}}$ and $-A$ being
positivity preserving.

There is some literature on the theory of smooth perturbations. Kato [7]

dealt with a perturbed operator of the form $T(\kappa)=T+\kappa V(\kappa$ being a small
complex-parameter) in a Hilbert space and established the similarity of $T(\kappa)$ to
$T$ . Kato’s result has been extended to a reflexive Banach space setting by Lin
$[9, 10]$ , and to a not necessarily reflexive Banach space setting by Evans [3].

These authors need to factorize the perturbation $V$ into the form $D^{*}C$ , where
$C$ is T-smooth and $D$ is $\tau*$-smooth. We do not use such factorization, however.

Our theory of smooth perturbations is applicable to the linear transport
operator (Boltzmann operator) in multiple scattering problem. We consider the
linear transport operator

$(-Bu)(x, \xi)=-\xi\cdot\nabla_{x}u(x, \xi)-\sigma(x, \xi)u(x, \xi)$

$+ \int_{R^{d}}k(x, \xi’, \xi)u(x, \xi’)d\xi’$ $(x\in R^{d}, \xi\in R^{d})$

as a perturbation of the collisionless transport operator $-B_{0}=-\xi\cdot\nabla_{x}$ . Here $\sigma$
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