Kernels of Toeplitz operators

By Takahiko NAKAZI

(Received March 4, 1985)

1. Introduction.

Let U be the open unit disc in the complex plane and let ∂U be the boundary of U. If f is analytic in U and $\int_{-\pi}^{\pi} \log^+ |f(re^{i\theta})| d\theta$ is bounded for $0 \leq r < 1$, $f(e^{i\theta})$, which we define to be $\lim_{r\to 1} f(re^{i\theta})$, exists almost everywhere on ∂U . If

$$\lim_{r\to 1}\int_{-\pi}^{\pi}\log^+|f(re^{i\theta})|\,d\theta=\int_{-\pi}^{\pi}\log^+|f(e^{i\theta})|\,d\theta\,,$$

then f is said to be of the class N_+ . The set of all boundary functions in N_+ is again denoted by N_+ . For $0 , the Hardy space <math>H^p$ is defined by $N_+ \cap L^p$ where L^p denotes $L^p(d\theta)$. If $1 \le p \le \infty$, it coincides with the space of functions in L^p whose Fourier coefficients with negative indices vanish. Put $H_0^p = \{f \in H^p :$ $f(0)=0\}$. If $f \in L^p$ $(1 and <math>f \sim \sum_{n=-\infty}^{\infty} c_n e^{in\theta}$, then by a well-known theorem of M. Riesz (cf. [6, p. 54]) the series $\sum_{n=0}^{\infty} c_n e^{in\theta}$ is the Fourier series of a function Pf belonging to L^p (therefore, to H^p), and moreover $\|Pf\|_p \le A_p \|f\|_p$ where A_p is a constant depending only on p. Thus P is a bounded projection from L^p to H^p .

Let $\phi \in L^{\infty}$. We define the Toeplitz operator \mathcal{T}_{ϕ} on H^p by

$$\mathcal{T}_{\phi}f = P(\phi f)$$

Clearly \mathcal{T}_{ϕ} is a bounded operator with norm at most $A_p \|\phi\|_{\infty}$. We would like to define Toeplitz operators on H^p for $p=\infty$ or 0 . There we cannot usethe projection*P* $. Therefore for <math>0 we define the Toeplitz operator <math>T_{\phi}$ on H^p by

$$T_{\phi}f = \phi f + \overline{H}_{0}^{p}$$

 T_{ϕ} is a bounded operator with norm at most $\|\phi\|_{\infty}$ from H^p to L^p/\overline{H}_0^p . Denoting the kernel of T_{ϕ} by ker T_{ϕ} , we have clearly

$$\ker T_{\phi} = \ker \mathcal{T}_{\phi}$$

for 1 .

In §4 of this paper, we determine under what conditions ker T_{ϕ} is finite

This research was partially supported by Grant-in-Aid for Scientific Research (No. 59540057), Ministry of Education, Science and Culture.